Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor (original) (raw)

Abstract

In addition to its role in selective protein degradation, the conjugation of ubiquitin to proteins has also been implicated in the internalization of plasma membrane proteins, including the alpha-factor receptor Ste2p, uracil permease Fur4p, epithelial sodium channel ENaC and the growth hormone receptor (GHR). Binding of GH to its receptor induces receptor dimerization, resulting in the activation of signal transduction pathways and an increase of GHR ubiquitination. Previously, we have shown that the ubiquitin conjugation system mediates GH-induced GHR internalization. Here, we present evidence that a specific domain of the GHR regulates receptor endocytosis via the ubiquitin conjugation system. This ubiquitin-dependent endocytosis (UbE) motif consists of the amino acid sequence DSWVEFIELD and is homologous to sequences in other proteins, several of which are known to be ubiquitinated. In addition, we show that GH internalization by a truncated GHR is independent of the presence of lysine residues in the cytosolic domain of this receptor, while internalization still depends on an intact ubiquitin conjugation system. Thus, GHR internalization requires the recruitment of the ubiquitin conjugation system to the GHR UbE motif rather than the conjugation of ubiquitin to the GHR itself.

Full Text

The Full Text of this article is available as a PDF (405.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberle H., Bauer A., Stappert J., Kispert A., Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997 Jul 1;16(13):3797–3804. doi: 10.1093/emboj/16.13.3797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allevato G., Billestrup N., Goujon L., Galsgaard E. D., Norstedt G., Postel-Vinay M. C., Kelly P. A., Nielsen J. H. Identification of phenylalanine 346 in the rat growth hormone receptor as being critical for ligand-mediated internalization and down-regulation. J Biol Chem. 1995 Jul 21;270(29):17210–17214. doi: 10.1074/jbc.270.29.17210. [DOI] [PubMed] [Google Scholar]
  3. Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J. W., Elledge S. J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996 Jul 26;86(2):263–274. doi: 10.1016/s0092-8674(00)80098-7. [DOI] [PubMed] [Google Scholar]
  4. Biederer T., Volkwein C., Sommer T. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J. 1996 May 1;15(9):2069–2076. [PMC free article] [PubMed] [Google Scholar]
  5. Cahoreau C., Garnier L., Djiane J., Devauchelle G., Cerutti M. Evidence for N-glycosylation and ubiquitination of the prolactin receptor expressed in a baculovirus-insect cell system. FEBS Lett. 1994 Aug 22;350(2-3):230–234. doi: 10.1016/0014-5793(94)00772-1. [DOI] [PubMed] [Google Scholar]
  6. Carbone R., Fré S., Iannolo G., Belleudi F., Mancini P., Pelicci P. G., Torrisi M. R., Di Fiore P. P. eps15 and eps15R are essential components of the endocytic pathway. Cancer Res. 1997 Dec 15;57(24):5498–5504. [PubMed] [Google Scholar]
  7. Cenciarelli C., Hou D., Hsu K. C., Rellahan B. L., Wiest D. L., Smith H. T., Fried V. A., Weissman A. M. Activation-induced ubiquitination of the T cell antigen receptor. Science. 1992 Aug 7;257(5071):795–797. doi: 10.1126/science.1323144. [DOI] [PubMed] [Google Scholar]
  8. Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
  9. Deveraux Q., Ustrell V., Pickart C., Rechsteiner M. A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem. 1994 Mar 11;269(10):7059–7061. [PubMed] [Google Scholar]
  10. DiDonato J., Mercurio F., Rosette C., Wu-Li J., Suyang H., Ghosh S., Karin M. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol. 1996 Apr;16(4):1295–1304. doi: 10.1128/mcb.16.4.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Egner R., Kuchler K. The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole. FEBS Lett. 1996 Jan 8;378(2):177–181. doi: 10.1016/0014-5793(95)01450-0. [DOI] [PubMed] [Google Scholar]
  12. Fazioli F., Minichiello L., Matoskova B., Wong W. T., Di Fiore P. P. eps15, a novel tyrosine kinase substrate, exhibits transforming activity. Mol Cell Biol. 1993 Sep;13(9):5814–5828. doi: 10.1128/mcb.13.9.5814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisher E. A., Zhou M., Mitchell D. M., Wu X., Omura S., Wang H., Goldberg A. L., Ginsberg H. N. The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J Biol Chem. 1997 Aug 15;272(33):20427–20434. doi: 10.1074/jbc.272.33.20427. [DOI] [PubMed] [Google Scholar]
  14. Galan J. M., Moreau V., Andre B., Volland C., Haguenauer-Tsapis R. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem. 1996 May 3;271(18):10946–10952. doi: 10.1074/jbc.271.18.10946. [DOI] [PubMed] [Google Scholar]
  15. Galan J. M., Volland C., Urban-Grimal D., Haguenauer-Tsapis R. The yeast plasma membrane uracil permease is stabilized against stress induced degradation by a point mutation in a cyclin-like "destruction box". Biochem Biophys Res Commun. 1994 Jun 15;201(2):769–775. doi: 10.1006/bbrc.1994.1767. [DOI] [PubMed] [Google Scholar]
  16. Galcheva-Gargova Z., Theroux S. J., Davis R. J. The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene. 1995 Dec 21;11(12):2649–2655. [PubMed] [Google Scholar]
  17. Glotzer M., Murray A. W., Kirschner M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. doi: 10.1038/349132a0. [DOI] [PubMed] [Google Scholar]
  18. Govers R., van Kerkhof P., Schwartz A. L., Strous G. J. Di-leucine-mediated internalization of ligand by a truncated growth hormone receptor is independent of the ubiquitin conjugation system. J Biol Chem. 1998 Jun 26;273(26):16426–16433. doi: 10.1074/jbc.273.26.16426. [DOI] [PubMed] [Google Scholar]
  19. Govers R., van Kerkhof P., Schwartz A. L., Strous G. J. Linkage of the ubiquitin-conjugating system and the endocytic pathway in ligand-induced internalization of the growth hormone receptor. EMBO J. 1997 Aug 15;16(16):4851–4858. doi: 10.1093/emboj/16.16.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gropper R., Brandt R. A., Elias S., Bearer C. F., Mayer A., Schwartz A. L., Ciechanover A. The ubiquitin-activating enzyme, E1, is required for stress-induced lysosomal degradation of cellular proteins. J Biol Chem. 1991 Feb 25;266(6):3602–3610. [PubMed] [Google Scholar]
  21. Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. [DOI] [PubMed] [Google Scholar]
  22. Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol. 1997 Dec;9(6):788–799. doi: 10.1016/s0955-0674(97)80079-8. [DOI] [PubMed] [Google Scholar]
  23. Hicke L., Riezman H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell. 1996 Jan 26;84(2):277–287. doi: 10.1016/s0092-8674(00)80982-4. [DOI] [PubMed] [Google Scholar]
  24. Hiller M. M., Finger A., Schweiger M., Wolf D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science. 1996 Sep 20;273(5282):1725–1728. doi: 10.1126/science.273.5282.1725. [DOI] [PubMed] [Google Scholar]
  25. Horak J., Wolf D. H. Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol. 1997 Mar;179(5):1541–1549. doi: 10.1128/jb.179.5.1541-1549.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jeffers M., Taylor G. A., Weidner K. M., Omura S., Vande Woude G. F. Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway. Mol Cell Biol. 1997 Feb;17(2):799–808. doi: 10.1128/mcb.17.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jing S. Q., Spencer T., Miller K., Hopkins C., Trowbridge I. S. Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J Cell Biol. 1990 Feb;110(2):283–294. doi: 10.1083/jcb.110.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jungmann J., Reins H. A., Schobert C., Jentsch S. Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature. 1993 Jan 28;361(6410):369–371. doi: 10.1038/361369a0. [DOI] [PubMed] [Google Scholar]
  29. Kulka R. G., Raboy B., Schuster R., Parag H. A., Diamond G., Ciechanover A., Marcus M. A Chinese hamster cell cycle mutant arrested at G2 phase has a temperature-sensitive ubiquitin-activating enzyme, E1. J Biol Chem. 1988 Oct 25;263(30):15726–15731. [PubMed] [Google Scholar]
  30. Kölling R., Hollenberg C. P. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 1994 Jul 15;13(14):3261–3271. doi: 10.1002/j.1460-2075.1994.tb06627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kölling R., Losko S. The linker region of the ABC-transporter Ste6 mediates ubiquitination and fast turnover of the protein. EMBO J. 1997 May 1;16(9):2251–2261. doi: 10.1093/emboj/16.9.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lee H. W., Smith L., Pettit G. R., Vinitsky A., Smith J. B. Ubiquitination of protein kinase C-alpha and degradation by the proteasome. J Biol Chem. 1996 Aug 30;271(35):20973–20976. [PubMed] [Google Scholar]
  33. Meyerson M., Enders G. H., Wu C. L., Su L. K., Gorka C., Nelson C., Harlow E., Tsai L. H. A family of human cdc2-related protein kinases. EMBO J. 1992 Aug;11(8):2909–2917. doi: 10.1002/j.1460-2075.1992.tb05360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mimnaugh E. G., Chavany C., Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem. 1996 Sep 13;271(37):22796–22801. doi: 10.1074/jbc.271.37.22796. [DOI] [PubMed] [Google Scholar]
  35. Miyazawa K., Toyama K., Gotoh A., Hendrie P. C., Mantel C., Broxmeyer H. E. Ligand-dependent polyubiquitination of c-kit gene product: a possible mechanism of receptor down modulation in M07e cells. Blood. 1994 Jan 1;83(1):137–145. [PubMed] [Google Scholar]
  36. Mori S., Claesson-Welsh L., Okuyama Y., Saito Y. Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem Biophys Res Commun. 1995 Aug 4;213(1):32–39. doi: 10.1006/bbrc.1995.2094. [DOI] [PubMed] [Google Scholar]
  37. Mori S., Heldin C. H., Claesson-Welsh L. Ligand-induced polyubiquitination of the platelet-derived growth factor beta-receptor. J Biol Chem. 1992 Mar 25;267(9):6429–6434. [PubMed] [Google Scholar]
  38. Mori S., Rönnstrand L., Claesson-Welsh L., Heldin C. H. A tyrosine residue in the juxtamembrane segment of the platelet-derived growth factor beta-receptor is critical for ligand-mediated endocytosis. J Biol Chem. 1994 Feb 18;269(7):4917–4921. [PubMed] [Google Scholar]
  39. Mori S., Tanaka K., Omura S., Saito Y. Degradation process of ligand-stimulated platelet-derived growth factor beta-receptor involves ubiquitin-proteasome proteolytic pathway. J Biol Chem. 1995 Dec 8;270(49):29447–29452. doi: 10.1074/jbc.270.49.29447. [DOI] [PubMed] [Google Scholar]
  40. Paolini R., Kinet J. P. Cell surface control of the multiubiquitination and deubiquitination of high-affinity immunoglobulin E receptors. EMBO J. 1993 Feb;12(2):779–786. doi: 10.1002/j.1460-2075.1993.tb05712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Plemper R. K., Böhmler S., Bordallo J., Sommer T., Wolf D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature. 1997 Aug 28;388(6645):891–895. doi: 10.1038/42276. [DOI] [PubMed] [Google Scholar]
  42. Postel-Vinay M. C., Finidori J. Growth hormone receptor: structure and signal transduction. Eur J Endocrinol. 1995 Dec;133(6):654–659. doi: 10.1530/eje.0.1330654. [DOI] [PubMed] [Google Scholar]
  43. Roth A. F., Davis N. G. Ubiquitination of the yeast a-factor receptor. J Cell Biol. 1996 Aug;134(3):661–674. doi: 10.1083/jcb.134.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roupas P., Herington A. C. Growth hormone receptors in cultured adipocytes: a model to study receptor regulation. Mol Cell Endocrinol. 1986 Sep;47(1-2):81–90. doi: 10.1016/0303-7207(86)90018-3. [DOI] [PubMed] [Google Scholar]
  45. Staub O., Dho S., Henry P., Correa J., Ishikawa T., McGlade J., Rotin D. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 1996 May 15;15(10):2371–2380. [PMC free article] [PubMed] [Google Scholar]
  46. Staub O., Gautschi I., Ishikawa T., Breitschopf K., Ciechanover A., Schild L., Rotin D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J. 1997 Nov 3;16(21):6325–6336. doi: 10.1093/emboj/16.21.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Strous G. J., van Kerkhof P., Govers R., Ciechanover A., Schwartz A. L. The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J. 1996 Aug 1;15(15):3806–3812. [PMC free article] [PubMed] [Google Scholar]
  48. Strous G. J., van Kerkhof P., Govers R., Rotwein P., Schwartz A. L. Growth hormone-induced signal tranduction depends on an intact ubiquitin system. J Biol Chem. 1997 Jan 3;272(1):40–43. doi: 10.1074/jbc.272.1.40. [DOI] [PubMed] [Google Scholar]
  49. Terrell J., Shih S., Dunn R., Hicke L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell. 1998 Jan;1(2):193–202. doi: 10.1016/s1097-2765(00)80020-9. [DOI] [PubMed] [Google Scholar]
  50. Treier M., Staszewski L. M., Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell. 1994 Sep 9;78(5):787–798. doi: 10.1016/s0092-8674(94)90502-9. [DOI] [PubMed] [Google Scholar]
  51. Wiertz E. J., Tortorella D., Bogyo M., Yu J., Mothes W., Jones T. R., Rapoport T. A., Ploegh H. L. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature. 1996 Dec 5;384(6608):432–438. doi: 10.1038/384432a0. [DOI] [PubMed] [Google Scholar]
  52. Yarden Y., Escobedo J. A., Kuang W. J., Yang-Feng T. L., Daniel T. O., Tremble P. M., Chen E. Y., Ando M. E., Harkins R. N., Francke U. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature. 1986 Sep 18;323(6085):226–232. doi: 10.1038/323226a0. [DOI] [PubMed] [Google Scholar]
  53. van Delft S., Govers R., Strous G. J., Verkleij A. J., van Bergen en Henegouwen P. M. Epidermal growth factor induces ubiquitination of Eps15. J Biol Chem. 1997 May 30;272(22):14013–14016. doi: 10.1074/jbc.272.22.14013. [DOI] [PubMed] [Google Scholar]
  54. van Delft S., Schumacher C., Hage W., Verkleij A. J., van Bergen en Henegouwen P. M. Association and colocalization of Eps15 with adaptor protein-2 and clathrin. J Cell Biol. 1997 Feb 24;136(4):811–821. doi: 10.1083/jcb.136.4.811. [DOI] [PMC free article] [PubMed] [Google Scholar]