Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas (original) (raw)

Abstract

Tumor growth is the result of deregulated tissue homeostasis which is maintained through the delicate balance of cell growth and apoptosis. One of the most efficient inducers of apoptosis is the death receptor Fas. We report here that oncogenic Ras (H-Ras) downregulates Fas expression and renders cells of fibroblastic and epitheloid origin resistant to Fas ligand-induced apoptosis. In Ras-transformed cells, Fas mRNA is absent. Inhibition of DNA methylation restores Fas expression. H-Ras signals via the PI 3-kinase pathway to downregulate Fas, suggesting that the known anti-apoptotic effect of the downstream PKB/Akt kinase may be mediated, at least in part, by the repression of Fas expression. Thus, the oncogenic potential of H-ras may reside on its capacity not only to promote cellular proliferation, but also to simultaneously inhibit Fas-triggered apoptosis.

Full Text

The Full Text of this article is available as a PDF (272.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosini G., Adida C., Altieri D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997 Aug;3(8):917–921. doi: 10.1038/nm0897-917. [DOI] [PubMed] [Google Scholar]
  2. Behrmann I., Walczak H., Krammer P. H. Structure of the human APO-1 gene. Eur J Immunol. 1994 Dec;24(12):3057–3062. doi: 10.1002/eji.1830241221. [DOI] [PubMed] [Google Scholar]
  3. Cardi G., Heaney J. A., Schned A. R., Ernstoff M. S. Expression of Fas(APO-1/CD95) in tumor-infiltrating and peripheral blood lymphocytes in patients with renal cell carcinoma. Cancer Res. 1998 May 15;58(10):2078–2080. [PubMed] [Google Scholar]
  4. Cheng J., Liu C., Koopman W. J., Mountz J. D. Characterization of human Fas gene. Exon/intron organization and promoter region. J Immunol. 1995 Feb 1;154(3):1239–1245. [PubMed] [Google Scholar]
  5. Chinnaiyan A. M., Dixit V. M. The cell-death machine. Curr Biol. 1996 May 1;6(5):555–562. doi: 10.1016/s0960-9822(02)00541-9. [DOI] [PubMed] [Google Scholar]
  6. Cory S. Apoptosis. Fascinating death factor. Nature. 1994 Jan 27;367(6461):317–318. doi: 10.1038/367317a0. [DOI] [PubMed] [Google Scholar]
  7. Downward J. Ras signalling and apoptosis. Curr Opin Genet Dev. 1998 Feb;8(1):49–54. doi: 10.1016/s0959-437x(98)80061-0. [DOI] [PubMed] [Google Scholar]
  8. Evan G. Cancer--a matter of life and cell death. Int J Cancer. 1997 May 29;71(5):709–711. doi: 10.1002/(sici)1097-0215(19970529)71:5<709::aid-ijc2>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  9. Faris M., Kokot N., Latinis K., Kasibhatla S., Green D. R., Koretzky G. A., Nel A. The c-Jun N-terminal kinase cascade plays a role in stress-induced apoptosis in Jurkat cells by up-regulating Fas ligand expression. J Immunol. 1998 Jan 1;160(1):134–144. [PubMed] [Google Scholar]
  10. Fenton R. G., Hixon J. A., Wright P. W., Brooks A. D., Sayers T. J. Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras. Cancer Res. 1998 Aug 1;58(15):3391–3400. [PubMed] [Google Scholar]
  11. Fialka I., Schwarz H., Reichmann E., Oft M., Busslinger M., Beug H. The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J Cell Biol. 1996 Mar;132(6):1115–1132. doi: 10.1083/jcb.132.6.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. French L. E., Hahne M., Viard I., Radlgruber G., Zanone R., Becker K., Müller C., Tschopp J. Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol. 1996 Apr;133(2):335–343. doi: 10.1083/jcb.133.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. French L. E., Wilson A., Hahne M., Viard I., Tschopp J., MacDonald H. R. Fas ligand expression is restricted to nonlymphoid thymic components in situ. J Immunol. 1997 Sep 1;159(5):2196–2202. [PubMed] [Google Scholar]
  14. Friesen C., Herr I., Krammer P. H., Debatin K. M. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med. 1996 May;2(5):574–577. doi: 10.1038/nm0596-574. [DOI] [PubMed] [Google Scholar]
  15. Green D. R., McGahon A., Martin S. J. Regulation of apoptosis by oncogenes. J Cell Biochem. 1996 Jan;60(1):33–38. doi: 10.1002/(sici)1097-4644(19960101)60:1<33::aid-jcb6>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  16. Gulbins E., Bissonnette R., Mahboubi A., Martin S., Nishioka W., Brunner T., Baier G., Baier-Bitterlich G., Byrd C., Lang F. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity. 1995 Apr;2(4):341–351. doi: 10.1016/1074-7613(95)90142-6. [DOI] [PubMed] [Google Scholar]
  17. Hahne M., Rimoldi D., Schröter M., Romero P., Schreier M., French L. E., Schneider P., Bornand T., Fontana A., Lienard D. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science. 1996 Nov 22;274(5291):1363–1366. doi: 10.1126/science.274.5291.1363. [DOI] [PubMed] [Google Scholar]
  18. Herr I., Wilhelm D., Böhler T., Angel P., Debatin K. M. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J. 1997 Oct 15;16(20):6200–6208. doi: 10.1093/emboj/16.20.6200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hueber A. O., Zörnig M., Lyon D., Suda T., Nagata S., Evan G. I. Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis. Science. 1997 Nov 14;278(5341):1305–1309. doi: 10.1126/science.278.5341.1305. [DOI] [PubMed] [Google Scholar]
  20. Irmler M., Thome M., Hahne M., Schneider P., Hofmann K., Steiner V., Bodmer J. L., Schröter M., Burns K., Mattmann C. Inhibition of death receptor signals by cellular FLIP. Nature. 1997 Jul 10;388(6638):190–195. doi: 10.1038/40657. [DOI] [PubMed] [Google Scholar]
  21. Kasibhatla S., Brunner T., Genestier L., Echeverri F., Mahboubi A., Green D. R. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell. 1998 Mar;1(4):543–551. doi: 10.1016/s1097-2765(00)80054-4. [DOI] [PubMed] [Google Scholar]
  22. Kauffmann-Zeh A., Rodriguez-Viciana P., Ulrich E., Gilbert C., Coffer P., Downward J., Evan G. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature. 1997 Feb 6;385(6616):544–548. doi: 10.1038/385544a0. [DOI] [PubMed] [Google Scholar]
  23. Khwaja A., Rodriguez-Viciana P., Wennström S., Warne P. H., Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 1997 May 15;16(10):2783–2793. doi: 10.1093/emboj/16.10.2783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Korsmeyer S. J. Regulators of cell death. Trends Genet. 1995 Mar;11(3):101–105. doi: 10.1016/S0168-9525(00)89010-1. [DOI] [PubMed] [Google Scholar]
  25. Krammer P. H. The CD95(APO-1/Fas) receptor/ligand system: death signals and diseases. Cell Death Differ. 1996 Apr;3(2):159–160. [PubMed] [Google Scholar]
  26. Latinis K. M., Koretzky G. A. Fas ligation induces apoptosis and Jun kinase activation independently of CD45 and Lck in human T cells. Blood. 1996 Feb 1;87(3):871–875. [PubMed] [Google Scholar]
  27. Lebel M., Bertrand R., Mes-Masson A. M. Decreased Fas antigen receptor expression in testicular tumor cell lines derived from polyomavirus large T-antigen transgenic mice. Oncogene. 1996 Mar 7;12(5):1127–1135. [PubMed] [Google Scholar]
  28. Leithäuser F., Dhein J., Mechtersheimer G., Koretz K., Brüderlein S., Henne C., Schmidt A., Debatin K. M., Krammer P. H., Möller P. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest. 1993 Oct;69(4):415–429. [PubMed] [Google Scholar]
  29. Levine A. J. p53, the cellular gatekeeper for growth and division. Cell. 1997 Feb 7;88(3):323–331. doi: 10.1016/s0092-8674(00)81871-1. [DOI] [PubMed] [Google Scholar]
  30. Liston P., Roy N., Tamai K., Lefebvre C., Baird S., Cherton-Horvat G., Farahani R., McLean M., Ikeda J. E., MacKenzie A. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature. 1996 Jan 25;379(6563):349–353. doi: 10.1038/379349a0. [DOI] [PubMed] [Google Scholar]
  31. MacLeod A. R., Rouleau J., Szyf M. Regulation of DNA methylation by the Ras signaling pathway. J Biol Chem. 1995 May 12;270(19):11327–11337. doi: 10.1074/jbc.270.19.11327. [DOI] [PubMed] [Google Scholar]
  32. Macara I. G., Lounsbury K. M., Richards S. A., McKiernan C., Bar-Sagi D. The Ras superfamily of GTPases. FASEB J. 1996 Apr;10(5):625–630. doi: 10.1096/fasebj.10.5.8621061. [DOI] [PubMed] [Google Scholar]
  33. Marshall C., Wyllie A. Oncogenes and cell proliferation. Curr Opin Genet Dev. 1996 Feb;6(1):1–3. doi: 10.1016/s0959-437x(96)90002-7. [DOI] [PubMed] [Google Scholar]
  34. Marte B. M., Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci. 1997 Sep;22(9):355–358. doi: 10.1016/s0968-0004(97)01097-9. [DOI] [PubMed] [Google Scholar]
  35. Möller P., Koretz K., Leithäuser F., Brüderlein S., Henne C., Quentmeier A., Krammer P. H. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer. 1994 May 1;57(3):371–377. doi: 10.1002/ijc.2910570314. [DOI] [PubMed] [Google Scholar]
  36. Nagata S. Apoptosis by death factor. Cell. 1997 Feb 7;88(3):355–365. doi: 10.1016/s0092-8674(00)81874-7. [DOI] [PubMed] [Google Scholar]
  37. Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
  38. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Peng S. L., Robert M. E., Hayday A. C., Craft J. A tumor-suppressor function for Fas (CD95) revealed in T cell-deficient mice. J Exp Med. 1996 Sep 1;184(3):1149–1154. doi: 10.1084/jem.184.3.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizaki Y., Jacobson M. D. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993 Oct 29;262(5134):695–700. doi: 10.1126/science.8235590. [DOI] [PubMed] [Google Scholar]
  41. Reed J. C. Double identity for proteins of the Bcl-2 family. Nature. 1997 Jun 19;387(6635):773–776. doi: 10.1038/42867. [DOI] [PubMed] [Google Scholar]
  42. Reichmann E. Oncogenes and epithelial cell transformation. Semin Cancer Biol. 1994 Apr;5(2):157–165. [PubMed] [Google Scholar]
  43. Reichmann E., Schwarz H., Deiner E. M., Leitner I., Eilers M., Berger J., Busslinger M., Beug H. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell. 1992 Dec 24;71(7):1103–1116. doi: 10.1016/s0092-8674(05)80060-1. [DOI] [PubMed] [Google Scholar]
  44. Rodriguez-Viciana P., Warne P. H., Khwaja A., Marte B. M., Pappin D., Das P., Waterfield M. D., Ridley A., Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell. 1997 May 2;89(3):457–467. doi: 10.1016/s0092-8674(00)80226-3. [DOI] [PubMed] [Google Scholar]
  45. Rudert F., Visser E., Forbes L., Lindridge E., Wang Y., Watson J. Identification of a silencer, enhancer, and basal promoter region in the human CD95 (Fas/APO-1) gene. DNA Cell Biol. 1995 Nov;14(11):931–937. doi: 10.1089/dna.1995.14.931. [DOI] [PubMed] [Google Scholar]
  46. Strand S., Hofmann W. J., Hug H., Müller M., Otto G., Strand D., Mariani S. M., Stremmel W., Krammer P. H., Galle P. R. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells--a mechanism of immune evasion? Nat Med. 1996 Dec;2(12):1361–1366. doi: 10.1038/nm1296-1361. [DOI] [PubMed] [Google Scholar]
  47. Strasser A., Harris A. W., Huang D. C., Krammer P. H., Cory S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 1995 Dec 15;14(24):6136–6147. doi: 10.1002/j.1460-2075.1995.tb00304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tollefson A. E., Hermiston T. W., Lichtenstein D. L., Colle C. F., Tripp R. A., Dimitrov T., Toth K., Wells C. E., Doherty P. C., Wold W. S. Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature. 1998 Apr 16;392(6677):726–730. doi: 10.1038/33712. [DOI] [PubMed] [Google Scholar]
  49. Tschopp J., Thome M., Hofmann K., Meinl E. The fight of viruses against apoptosis. Curr Opin Genet Dev. 1998 Feb;8(1):82–87. doi: 10.1016/s0959-437x(98)80066-x. [DOI] [PubMed] [Google Scholar]
  50. Tsujimoto Y., Gorham J., Cossman J., Jaffe E., Croce C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science. 1985 Sep 27;229(4720):1390–1393. doi: 10.1126/science.3929382. [DOI] [PubMed] [Google Scholar]
  51. Ward R. L., Todd A. V., Santiago F., O'Connor T., Hawkins N. J. Activation of the K-ras oncogene in colorectal neoplasms is associated with decreased apoptosis. Cancer. 1997 Mar 15;79(6):1106–1113. [PubMed] [Google Scholar]
  52. Zörnig M., Grzeschiczek A., Kowalski M. B., Hartmann K. U., Möröy T. Loss of Fas/Apo-1 receptor accelerates lymphomagenesis in E mu L-MYC transgenic mice but not in animals infected with MoMuLV. Oncogene. 1995 Jun 15;10(12):2397–2401. [PubMed] [Google Scholar]