Intrachromosomal Gene Conversion and the Maintenance of Sequence Homogeneity among Repeated Genes (original) (raw)

Abstract

Intrachromosomal gene conversion is the non-reciprocal transfer of information between a pair of repeated genes on a single chromosome. This process produces eventual sequence homogeneity within a family of repeated genes. An evolutionary model for a single chromosome lineage was formulated and analyzed. Expressions were derived for the fixation probability, mean time to fixation or loss, and mean conditional fixation time for a variant repeat with an arbitrary initial frequency. It was shown that a small conversional advantage or disadvantage for the variant repeat (higher or lower probability of producing two variant genes by conversion than two wild-type genes) can have a dramatic effect on the probability of fixation. The results imply that intrachromosomal gene conversion can act sufficiently rapidly to be an important mechanism for maintaining sequence homogeneity among repeated genes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birky C. W., Jr, Skavaril R. V. Maintenance of genetic homogeneity in systems with multiple genomes. Genet Res. 1976 Apr;27(2):249–265. doi: 10.1017/s001667230001644x. [DOI] [PubMed] [Google Scholar]
  2. Brown D. D., Sugimoto K. The structure and evolution of ribosomal and 5S DNAs in Xenopus laevis and Xenopus mulleri. Cold Spring Harb Symp Quant Biol. 1974;38:501–505. doi: 10.1101/sqb.1974.038.01.054. [DOI] [PubMed] [Google Scholar]
  3. Fogel S., Mortimer R., Lusnak K., Tavares F. Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1325–1341. doi: 10.1101/sqb.1979.043.01.152. [DOI] [PubMed] [Google Scholar]
  4. Jackson J. A., Fink G. R. Gene conversion between duplicated genetic elements in yeast. Nature. 1981 Jul 23;292(5821):306–311. doi: 10.1038/292306a0. [DOI] [PubMed] [Google Scholar]
  5. Jeffreys A. J. DNA sequence variants in the G gamma-, A gamma-, delta- and beta-globin genes of man. Cell. 1979 Sep;18(1):1–10. doi: 10.1016/0092-8674(79)90348-9. [DOI] [PubMed] [Google Scholar]
  6. Kimura M., Ohta T. The age of a neutral mutant persisting in a finite population. Genetics. 1973 Sep;75(1):199–212. doi: 10.1093/genetics/75.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klein H. L., Petes T. D. Intrachromosomal gene conversion in yeast. Nature. 1981 Jan 15;289(5794):144–148. doi: 10.1038/289144a0. [DOI] [PubMed] [Google Scholar]
  8. Leblon G., Rossignol J. L. Mechanism of gene conversion in Ascobolus immersus. 3. The interaction of heteroallelas in the conversion process. Mol Gen Genet. 1973 Apr 12;122(2):165–182. doi: 10.1007/BF00435189. [DOI] [PubMed] [Google Scholar]
  9. Leigh Brown A. J., Ish-Horowicz D. Evolution of the 87A and 87C heat-shock loci in Drosophila. Nature. 1981 Apr 23;290(5808):677–682. doi: 10.1038/290677a0. [DOI] [PubMed] [Google Scholar]
  10. Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ohta T. Simple model for treating evolution of multigene families. Nature. 1976 Sep 2;263(5572):74–76. doi: 10.1038/263074a0. [DOI] [PubMed] [Google Scholar]