Codon Usage Bias and Base Composition of Nuclear Genes in Drosophila (original) (raw)

Abstract

The nuclear genes of Drosophila evolve at various rates. This variation seems to correlate with codon-usage bias. In order to elucidate the determining factors of the various evolutionary rates and codon-usage bias in the Drosophila nuclear genome, we compared patterns of codon-usage bias with base compositions of exons and introns. Our results clearly show the existence of selective constraints at the translational level for synonymous (silent) sites and, on the other hand, the neutrality or near neutrality of long stretches of nucleotide sequence within noncoding regions. These features were found for comparisons among nuclear genes in a particular species (Drosophila melanogaster, Drosophila pseudoobscura and Drosophila virilis) as well as in a particular gene (alcohol dehydrogenase) among different species in the genus Drosophila. The patterns of evolution of synonymous sites in Drosophila are more similar to those in the prokaryotes than they are to those in mammals. If a difference in the level of expression of each gene is a main reason for the difference in the degree of selective constraint, the evolution of synonymous sites of Drosophila genes would be sensitive to the level of expression among genes and would change as the level of expression becomes altered in different species. Our analysis verifies these predictions and also identifies additional selective constraints at the translational level in Drosophila.

Full Text

The Full Text of this article is available as a PDF (896.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aota S., Ikemura T. Diversity in G + C content at the third position of codons in vertebrate genes and its cause. Nucleic Acids Res. 1986 Aug 26;14(16):6345–6355. doi: 10.1093/nar/14.16.6345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bender W., Spierer P., Hogness D. S. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol. 1983 Jul 25;168(1):17–33. doi: 10.1016/s0022-2836(83)80320-9. [DOI] [PubMed] [Google Scholar]
  3. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  4. Britten R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science. 1986 Mar 21;231(4744):1393–1398. doi: 10.1126/science.3082006. [DOI] [PubMed] [Google Scholar]
  5. Bryan G. J., Jacobson J. W., Hartl D. L. Heritable somatic excision of a Drosophila transposon. Science. 1987 Mar 27;235(4796):1636–1638. doi: 10.1126/science.3029874. [DOI] [PubMed] [Google Scholar]
  6. Bryan G., Garza D., Hartl D. Insertion and excision of the transposable element mariner in Drosophila. Genetics. 1990 May;125(1):103–114. doi: 10.1093/genetics/125.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bulmer M. A statistical analysis of nucleotide sequences of introns and exons in human genes. Mol Biol Evol. 1987 Jul;4(4):395–405. doi: 10.1093/oxfordjournals.molbev.a040453. [DOI] [PubMed] [Google Scholar]
  8. Bulmer M. Codon usage and intragenic position. J Theor Biol. 1988 Jul 8;133(1):67–71. doi: 10.1016/s0022-5193(88)80024-9. [DOI] [PubMed] [Google Scholar]
  9. Capy P., Koga A., David J. R., Hartl D. L. Sequence analysis of active mariner elements in natural populations of Drosophila simulans. Genetics. 1992 Mar;130(3):499–506. doi: 10.1093/genetics/130.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Capy P., Maruyama K., David J. R., Hartl D. L. Insertion sites of the transposable element mariner are fixed in the genome of Drosophila sechellia. J Mol Evol. 1991 Nov;33(5):450–456. doi: 10.1007/BF02103137. [DOI] [PubMed] [Google Scholar]
  11. Daniels S. B., Chovnick A., Boussy I. A. Distribution of hobo transposable elements in the genus Drosophila. Mol Biol Evol. 1990 Nov;7(6):589–606. doi: 10.1093/oxfordjournals.molbev.a040625. [DOI] [PubMed] [Google Scholar]
  12. Daniels S. B., Strausbaugh L. D. The distribution of P-element sequences in Drosophila: the willistoni and saltans species groups. J Mol Evol. 1986;23(2):138–148. doi: 10.1007/BF02099908. [DOI] [PubMed] [Google Scholar]
  13. Garza D., Medhora M., Koga A., Hartl D. L. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics. 1991 Jun;128(2):303–310. doi: 10.1093/genetics/128.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hazelrigg T., Levis R., Rubin G. M. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell. 1984 Feb;36(2):469–481. doi: 10.1016/0092-8674(84)90240-x. [DOI] [PubMed] [Google Scholar]
  15. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. doi: 10.1093/oxfordjournals.molbev.a040335. [DOI] [PubMed] [Google Scholar]
  16. Jacobson J. W., Medhora M. M., Hartl D. L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8684–8688. doi: 10.1073/pnas.83.22.8684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klemenz R., Weber U., Gehring W. J. The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res. 1987 May 26;15(10):3947–3959. doi: 10.1093/nar/15.10.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lawrence J. G., Hartl D. L. Inference of horizontal genetic transfer from molecular data: an approach using the bootstrap. Genetics. 1992 Jul;131(3):753–760. doi: 10.1093/genetics/131.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lawrence J. G., Hartl D. L. Unusual codon bias occurring within insertion sequences in Escherichia coli. Genetica. 1991;84(1):23–29. doi: 10.1007/BF00123981. [DOI] [PubMed] [Google Scholar]
  20. Lidholm D. A., Gudmundsson G. H., Boman H. G. A highly repetitive, mariner-like element in the genome of Hyalophora cecropia. J Biol Chem. 1991 Jun 25;266(18):11518–11521. [PubMed] [Google Scholar]
  21. Liljenström H., von Heijne G. Translation rate modification by preferential codon usage: intragenic position effects. J Theor Biol. 1987 Jan 7;124(1):43–55. doi: 10.1016/s0022-5193(87)80251-5. [DOI] [PubMed] [Google Scholar]
  22. Lozovskaya E. R., Petrov D. A., Hartl D. L. A combined molecular and cytogenetic approach to genome evolution in Drosophila using large-fragment DNA cloning. Chromosoma. 1993 Mar;102(4):253–266. doi: 10.1007/BF00352399. [DOI] [PubMed] [Google Scholar]
  23. Marfany G., Gonzàlez-Duarte R. The Adh genomic region of Drosophila ambigua: evolutionary trends in different species. J Mol Evol. 1991 Jun;32(6):454–462. doi: 10.1007/BF02102647. [DOI] [PubMed] [Google Scholar]
  24. Maruyama K., Hartl D. L. Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol. 1991 Dec;33(6):514–524. doi: 10.1007/BF02102804. [DOI] [PubMed] [Google Scholar]
  25. Maruyama K., Hartl D. L. Evolution of the transposable element mariner in Drosophila species. Genetics. 1991 Jun;128(2):319–329. doi: 10.1093/genetics/128.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Maruyama K., Schoor K. D., Hartl D. L. Identification of nucleotide substitutions necessary for trans-activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics. 1991 Aug;128(4):777–784. doi: 10.1093/genetics/128.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miyata T., Yasunaga T., Nishida T. Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7328–7332. doi: 10.1073/pnas.77.12.7328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moriyama E. N., Gojobori T. Rates of synonymous substitution and base composition of nuclear genes in Drosophila. Genetics. 1992 Apr;130(4):855–864. doi: 10.1093/genetics/130.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mullins M. C., Rio D. C., Rubin G. M. cis-acting DNA sequence requirements for P-element transposition. Genes Dev. 1989 May;3(5):729–738. doi: 10.1101/gad.3.5.729. [DOI] [PubMed] [Google Scholar]
  30. Robertson H. M. The mariner transposable element is widespread in insects. Nature. 1993 Mar 18;362(6417):241–245. doi: 10.1038/362241a0. [DOI] [PubMed] [Google Scholar]
  31. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  32. Sharp P. M., Devine K. M. Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do 'prefer' optimal codons. Nucleic Acids Res. 1989 Jul 11;17(13):5029–5039. doi: 10.1093/nar/17.13.5029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sharp P. M., Li W. H. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. doi: 10.1007/BF02603075. [DOI] [PubMed] [Google Scholar]
  34. Sharp P. M., Li W. H. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987 May;4(3):222–230. doi: 10.1093/oxfordjournals.molbev.a040443. [DOI] [PubMed] [Google Scholar]
  35. Sharp P. M. Processes of genome evolution reflected by base frequency differences among Serratia marcescens genes. Mol Microbiol. 1990 Jan;4(1):119–122. doi: 10.1111/j.1365-2958.1990.tb02020.x. [DOI] [PubMed] [Google Scholar]
  36. Sharp P. M., Tuohy T. M., Mosurski K. R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986 Jul 11;14(13):5125–5143. doi: 10.1093/nar/14.13.5125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shields D. C., Sharp P. M., Higgins D. G., Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. doi: 10.1093/oxfordjournals.molbev.a040525. [DOI] [PubMed] [Google Scholar]
  38. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  39. Wilson C., Pearson R. K., Bellen H. J., O'Kane C. J., Grossniklaus U., Gehring W. J. P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev. 1989 Sep;3(9):1301–1313. doi: 10.1101/gad.3.9.1301. [DOI] [PubMed] [Google Scholar]
  40. Wolfe K. H., Sharp P. M., Li W. H. Mutation rates differ among regions of the mammalian genome. Nature. 1989 Jan 19;337(6204):283–285. doi: 10.1038/337283a0. [DOI] [PubMed] [Google Scholar]