P-Element-Induced Recombination in Drosophila Melanogaster: Hybrid Element Insertion (original) (raw)
Abstract
It has previously been shown that the combination of two deleted P elements in trans, one containing the left functional end and the second element the right functional end, can lead to high levels of male recombination. This finding strongly suggests that P-element ends from different chromosomes can become associated, followed by ``pseudo-excision.'' We show that two different processes are involved in resolving the pseudo-excision event: (1) the excised P-element ends continue to function as a single unit (Hybrid Element) and insert at a nearby site in the chromosome or into the element itself [Hybrid Element Insertion (HEI)] and (2) free ends that do not contain P elements repair and rejoin [(Hybrid Excision and Repair (HER)]. Both types of resolution can lead to recombination, and this paper concentrates on the HEI class. One type of HEI event predicts the exact reverse complementary duplication of an 8-bp target site, and we have confirmed the existence of such a structure in six independently derived recombinant chromosomes. There is also a high tendency for insertion events to occur within a few bases of the original 8-bp target site, including six apparent cases of insertion into the exact site.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bingham P. M., Kidwell M. G., Rubin G. M. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell. 1982 Jul;29(3):995–1004. doi: 10.1016/0092-8674(82)90463-9. [DOI] [PubMed] [Google Scholar]
- Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
- English J., Harrison K., Jones J. D. A genetic analysis of DNA sequence requirements for Dissociation state I activity in tobacco. Plant Cell. 1993 May;5(5):501–514. doi: 10.1105/tpc.5.5.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golic K. G. Local transposition of P elements in Drosophila melanogaster and recombination between duplicated elements using a site-specific recombinase. Genetics. 1994 Jun;137(2):551–563. doi: 10.1093/genetics/137.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiraizumi Y. Spontaneous recombination in Drosophila melanogaster males. Proc Natl Acad Sci U S A. 1971 Feb;68(2):268–270. doi: 10.1073/pnas.68.2.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson-Schlitz D. M., Engels W. R. P-element-induced interallelic gene conversion of insertions and deletions in Drosophila melanogaster. Mol Cell Biol. 1993 Nov;13(11):7006–7018. doi: 10.1128/mcb.13.11.7006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarron M. Y., Duttaroy A., Doughty G. A., Chovnick A. P-element transposase induces male recombination in Drosophila melanogaster. Genet Res. 1989 Oct;54(2):137–141. doi: 10.1017/s0016672300028500. [DOI] [PubMed] [Google Scholar]
- Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
- Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
- Preston C. R., Sved J. A., Engels W. R. Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics. 1996 Dec;144(4):1623–1638. doi: 10.1093/genetics/144.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts D. E., Ascherman D., Kleckner N. IS10 promotes adjacent deletions at low frequency. Genetics. 1991 May;128(1):37–43. doi: 10.1093/genetics/128.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sved J. A., Blackman L. M., Gilchrist A. S., Engels W. R. High levels of recombination induced by homologous P elements in Drosophila melanogaster. Mol Gen Genet. 1991 Mar;225(3):443–447. doi: 10.1007/BF00261685. [DOI] [PubMed] [Google Scholar]
- Sved J. A., Eggleston W. B., Engels W. R. Germ-line and somatic recombination induced by in vitro modified P elements in Drosophila melanogaster. Genetics. 1990 Feb;124(2):331–337. doi: 10.1093/genetics/124.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tower J., Karpen G. H., Craig N., Spradling A. C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics. 1993 Feb;133(2):347–359. doi: 10.1093/genetics/133.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weil C. F., Wessler S. R. Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell. 1993 May;5(5):515–522. doi: 10.1105/tpc.5.5.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P., Spradling A. C. Efficient and dispersed local P element transposition from Drosophila females. Genetics. 1993 Feb;133(2):361–373. doi: 10.1093/genetics/133.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]