Synaptic drive and impulse generation in ganglion cells of turtle retina (original) (raw)

Abstract

1. Light reponses and electrical constants of ganglion cells in the retina of the turtle were examined by intracellular recording in eyecup preparations. 2. In 'on', 'off', and 'on/off' cells, the impulses produced by illumination of the centre of the receptive field arose from slow synaptic depolarizations. The ganglion cells also exhibited inhibitory synaptic potentials. 3. The synaptic depolarization evoked by a step change in light intensity rose more slowly than the response of the cones in which the excitation originated, and the depolarization then declined in spite of a well maintained cone response. This behaviour is consistent with the notion advanced previously that, during transmission to ganglion cells, receptor signals are relayed through the equivalent of a bandpass filter. 4. The e.p.s.p.s evoked by light grew when the membrane was hyperpolarized by injected current and decreased when the membrane was depolarized. The i.p.s.p.s reversed at a level slightly negative to the resting potential in darkness. 5. In neither 'on' nor 'off' ganglion cells did the synaptic potentials evoked by step changes in illumination show the hyperpolarizing phases expected of a linear filter. The absence of hyperpolarizations is consistent with a rectification which permits transmission of depolarizations but not hyperpolarizations from bipolar to ganglion cells. 6. In darkness the membrane potential of some ganglion cells showed random depolarizations which brought the potential near the threshold for impulse generation. 7. With very small spots in the receptive field centre the 'on' responses of ganglion cells to flashes and steps of light grew approximately linearly with stimulus intensity. The step reponse was not, however, related to the flash response by superposition. Larger spots in the field centre gave responses which grew non-linearly with the intensity of even dim stimuli. 8 Depolarizing current passed through the recording electrode elicited a repetitive discharge of impulses. The frequency of firing increased linearly with current strength above a rheobase value of about 10(-10) A. Accommodation occurred during steady currents, the main decline taking place with a time constant of about 15 msec. 9. Strength-latency measurements and bridge records of ganglion cell charging by constant currents gave time constants of 10--20 msec and input resistances of 100--150 M omega.

107

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLOW H. B., HILL R. M., LEVICK W. R. RETINAL GANGLION CELLS RESPONDING SELECTIVELY TO DIRECTION AND SPEED OF IMAGE MOTION IN THE RABBIT. J Physiol. 1964 Oct;173:377–407. doi: 10.1113/jphysiol.1964.sp007463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor D. A., Fettiplace R. Kinetics of synaptic transfer from receptors to ganglion cells in turtle retina. J Physiol. 1977 Oct;271(2):425–448. doi: 10.1113/jphysiol.1977.sp012007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baylor D. A., Fettiplace R. Light path and photon capture in turtle photoreceptors. J Physiol. 1975 Jun;248(2):433–464. doi: 10.1113/jphysiol.1975.sp010983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baylor D. A., Fettiplace R. Transmission from photoreceptors to ganglion cells in turtle retina. J Physiol. 1977 Oct;271(2):391–424. doi: 10.1113/jphysiol.1977.sp012006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baylor D. A., Hodgkin A. L. Detection and resolution of visual stimuli by turtle photoreceptors. J Physiol. 1973 Oct;234(1):163–198. doi: 10.1113/jphysiol.1973.sp010340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baylor D. A., Hodgkin A. L., Lamb T. D. The electrical response of turtle cones to flashes and steps of light. J Physiol. 1974 Nov;242(3):685–727. doi: 10.1113/jphysiol.1974.sp010731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cervetto L., Fuortes M. G. Excitation and interaction in the retina. Annu Rev Biophys Bioeng. 1978;7:229–251. doi: 10.1146/annurev.bb.07.060178.001305. [DOI] [PubMed] [Google Scholar]
  8. FRANK K., FUORTES M. G. Stimulation of spinal motoneurones with intracellular electrodes. J Physiol. 1956 Nov 28;134(2):451–470. doi: 10.1113/jphysiol.1956.sp005657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRANIT R., KERNELL D., SHORTESS G. K. QUANTITATIVE ASPECTS OF REPETITIVE FIRING OF MAMMALIAN MOTONEURONES, CAUSED BY INJECTED CURRENTS. J Physiol. 1963 Oct;168:911–931. doi: 10.1113/jphysiol.1963.sp007230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hochstein S., Shapley R. M. Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol. 1976 Nov;262(2):265–284. doi: 10.1113/jphysiol.1976.sp011595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hodgkin A. L. The local electric changes associated with repetitive action in a non-medullated axon. J Physiol. 1948 Mar 15;107(2):165–181. doi: 10.1113/jphysiol.1948.sp004260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lamb T. D., Simon E. J. Analysis of electrical noise in turtle cones. J Physiol. 1977 Nov;272(2):435–468. doi: 10.1113/jphysiol.1977.sp012053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Magherini P. C., Precht W. Electrical properties of frog motoneurons in the in situ spinal cord. J Neurophysiol. 1976 May;39(3):459–473. doi: 10.1152/jn.1976.39.3.459. [DOI] [PubMed] [Google Scholar]
  15. Marchiafava P. L. Centrifugal actions on amacrine and ganglion cells in the retina of the turtle. J Physiol. 1976 Feb;255(1):137–155. doi: 10.1113/jphysiol.1976.sp011273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marchiafava P. L., Torre V. Self-facilitation of ganglion cells in the retina of the turtle. J Physiol. 1977 Jun;268(2):335–351. doi: 10.1113/jphysiol.1977.sp011860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller R. F., Dacheux R. F. Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells. J Gen Physiol. 1976 Jun;67(6):639–659. doi: 10.1085/jgp.67.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schwartz E. A. Organization of on-off cells in the retina of the turtle. J Physiol. 1973 Apr;230(1):1–14. doi: 10.1113/jphysiol.1973.sp010171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz E. A. Voltage noise observed in rods of the turtle retina. J Physiol. 1977 Nov;272(2):217–246. doi: 10.1113/jphysiol.1977.sp012042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Simon E. J., Lamb T. D., Hodgkin A. L. Spontaneous voltage fluctuations in retinal cones and bipolar cells. Nature. 1975 Aug 21;256(5519):661–662. doi: 10.1038/256661a0. [DOI] [PubMed] [Google Scholar]
  21. Spekreijse H., van den Berg T. J. Interaction between colour and spatial coded processes converging to retinal glanglion cells in goldfish. J Physiol. 1971 Jul;215(3):679–692. doi: 10.1113/jphysiol.1971.sp009491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Toyoda J. Frequency characteristics of retinal neurons in the carp. J Gen Physiol. 1974 Feb;63(2):214–234. doi: 10.1085/jgp.63.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]