The promoter of the heterochromatic Drosophila telomeric retrotransposon, HeT-A, is active when moved into euchromatic locations (original) (raw)

Abstract

The Drosophila telomeric retrotransposon, HeT-A, is found only in heterochromatin; therefore, its promoter must function in this chromatin environment. Studies of position effect variegation suggest that promoters of heterochromatic genes are very different from euchromatic promoters, but this idea has not been tested with isolated promoter sequences. The HeT-A promoter is the first heterochromatin promoter to be isolated and it is of interest to investigate its activity when removed from telomeric heterochromatin. This promoter was initially characterized by testing reporter constructs in transient transfection of cultured cells, an environment that may approximate its endogenous heterochromatin. We now report P-element-mediated transpositions of these constructs, testing the function of different parts of the putative promoter in euchromatin. Expression of endogenous HeT-A RNA shows marked developmental regulation and accumulates preferentially in replicating diploid tissues. HeT-A promoter constructs are active in all euchromatic locations tested and some display aspects of endogenous HeT-A stage- and cell-type expression programs. The activity of each promoter construct in euchromatic locations is also generally consistent with its activity in the transient transfection tests; a possibly significant exception is one sequence segment that appreciably enhanced activity in transient transfection but repressed promoter activity in euchromatin.

Full Text

The Full Text of this article is available as a PDF (299.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. V., Lengyel J. A. Changing rates of histone mRNA synthesis and turnover in Drosophila embryos. Cell. 1980 Oct;21(3):717–727. doi: 10.1016/0092-8674(80)90435-3. [DOI] [PubMed] [Google Scholar]
  2. Baumbach L. L., Stein G. S., Stein J. L. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication. Biochemistry. 1987 Sep 22;26(19):6178–6187. doi: 10.1021/bi00393a034. [DOI] [PubMed] [Google Scholar]
  3. Biessmann H., Carter S. B., Mason J. M. Chromosome ends in Drosophila without telomeric DNA sequences. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1758–1761. doi: 10.1073/pnas.87.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackburn E. H. Switching and signaling at the telomere. Cell. 2001 Sep 21;106(6):661–673. doi: 10.1016/s0092-8674(01)00492-5. [DOI] [PubMed] [Google Scholar]
  5. Blasco M. A., Funk W., Villeponteau B., Greider C. W. Functional characterization and developmental regulation of mouse telomerase RNA. Science. 1995 Sep 1;269(5228):1267–1270. doi: 10.1126/science.7544492. [DOI] [PubMed] [Google Scholar]
  6. Bryant P. J., Levinson P. Intrinsic growth control in the imaginal primordia of Drosophila, and the autonomous action of a lethal mutation causing overgrowth. Dev Biol. 1985 Feb;107(2):355–363. doi: 10.1016/0012-1606(85)90317-3. [DOI] [PubMed] [Google Scholar]
  7. Casacuberta Elena, Pardue Mary-Lou. Coevolution of the telomeric retrotransposons across Drosophila species. Genetics. 2002 Jul;161(3):1113–1124. doi: 10.1093/genetics/161.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clegg N. J., Honda B. M., Whitehead I. P., Grigliatti T. A., Wakimoto B., Brock H. W., Lloyd V. K., Sinclair D. A. Suppressors of position-effect variegation in Drosophila melanogaster affect expression of the heterochromatic gene light in the absence of a chromosome rearrangement. Genome. 1998 Aug;41(4):495–503. [PubMed] [Google Scholar]
  9. Cryderman D. E., Cuaycong M. H., Elgin S. C., Wallrath L. L. Characterization of sequences associated with position-effect variegation at pericentric sites in Drosophila heterochromatin. Chromosoma. 1998 Nov;107(5):277–285. doi: 10.1007/s004120050309. [DOI] [PubMed] [Google Scholar]
  10. Cryderman D. E., Morris E. J., Biessmann H., Elgin S. C., Wallrath L. L. Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J. 1999 Jul 1;18(13):3724–3735. doi: 10.1093/emboj/18.13.3724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Danilevskaya O. N., Arkhipova I. R., Traverse K. L., Pardue M. L. Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell. 1997 Mar 7;88(5):647–655. doi: 10.1016/s0092-8674(00)81907-8. [DOI] [PubMed] [Google Scholar]
  12. Danilevskaya O. N., Traverse K. L., Hogan N. C., DeBaryshe P. G., Pardue M. L. The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol Cell Biol. 1999 Jan;19(1):873–881. doi: 10.1128/mcb.19.1.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Danilevskaya O., Lofsky A., Kurenova E. V., Pardue M. L. The Y chromosome of Drosophila melanogaster contains a distinctive subclass of Het-A-related repeats. Genetics. 1993 Jun;134(2):531–543. doi: 10.1093/genetics/134.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Devlin R. H., Bingham B., Wakimoto B. T. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics. 1990 May;125(1):129–140. doi: 10.1093/genetics/125.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eberl D. F., Duyf B. J., Hilliker A. J. The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster. Genetics. 1993 May;134(1):277–292. doi: 10.1093/genetics/134.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eissenberg J. C., Hilliker A. J. Versatility of conviction: heterochromatin as both a repressor and an activator of transcription. Genetica. 2000;109(1-2):19–24. doi: 10.1023/a:1026544717126. [DOI] [PubMed] [Google Scholar]
  17. Gilbert S. L., Pehrson J. R., Sharp P. A. XIST RNA associates with specific regions of the inactive X chromatin. J Biol Chem. 2000 Nov 24;275(47):36491–36494. doi: 10.1074/jbc.C000409200. [DOI] [PubMed] [Google Scholar]
  18. Golubovsky M. D., Konev A. Y., Walter M. F., Biessmann H., Mason J. M. Terminal retrotransposons activate a subtelomeric white transgene at the 2L telomere in Drosophila. Genetics. 2001 Jul;158(3):1111–1123. doi: 10.1093/genetics/158.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hilliker A. J. Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. Genetics. 1976 Aug;83(4):765–782. doi: 10.1093/genetics/83.4.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Howe M., Dimitri P., Berloco M., Wakimoto B. T. Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics. 1995 Jul;140(3):1033–1045. doi: 10.1093/genetics/140.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kahn T., Savitsky M., Georgiev P. Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol. 2000 Oct;20(20):7634–7642. doi: 10.1128/mcb.20.20.7634-7642.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Karpen G. H., Spradling A. C. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics. 1992 Nov;132(3):737–753. doi: 10.1093/genetics/132.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kozopas K. M., Samos C. H., Nusse R. DWnt-2, a Drosophila Wnt gene required for the development of the male reproductive tract, specifies a sexually dimorphic cell fate. Genes Dev. 1998 Apr 15;12(8):1155–1165. doi: 10.1101/gad.12.8.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Levis R. W., Ganesan R., Houtchens K., Tolar L. A., Sheen F. M. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 1993 Dec 17;75(6):1083–1093. doi: 10.1016/0092-8674(93)90318-k. [DOI] [PubMed] [Google Scholar]
  25. Lifton R. P., Goldberg M. L., Karp R. W., Hogness D. S. The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1047–1051. doi: 10.1101/sqb.1978.042.01.105. [DOI] [PubMed] [Google Scholar]
  26. Lu B. Y., Ma J., Eissenberg J. C. Developmental regulation of heterochromatin-mediated gene silencing in Drosophila. Development. 1998 Jun;125(12):2223–2234. doi: 10.1242/dev.125.12.2223. [DOI] [PubMed] [Google Scholar]
  27. Lyon M. F. X-chromosome inactivation and developmental patterns in mammals. Biol Rev Camb Philos Soc. 1972 Jan;47(1):1–35. doi: 10.1111/j.1469-185x.1972.tb00969.x. [DOI] [PubMed] [Google Scholar]
  28. Martín-Rivera L., Herrera E., Albar J. P., Blasco M. A. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10471–10476. doi: 10.1073/pnas.95.18.10471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McLean C., Bucheton A., Finnegan D. J. The 5' untranslated region of the I factor, a long interspersed nuclear element-like retrotransposon of Drosophila melanogaster, contains an internal promoter and sequences that regulate expression. Mol Cell Biol. 1993 Feb;13(2):1042–1050. doi: 10.1128/mcb.13.2.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Minchiotti G., Di Nocera P. P. Convergent transcription initiates from oppositely oriented promoters within the 5' end regions of Drosophila melanogaster F elements. Mol Cell Biol. 1991 Oct;11(10):5171–5180. doi: 10.1128/mcb.11.10.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mizrokhi L. J., Georgieva S. G., Ilyin Y. V. jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II. Cell. 1988 Aug 26;54(5):685–691. doi: 10.1016/s0092-8674(88)80013-8. [DOI] [PubMed] [Google Scholar]
  32. Moss Tom, Stefanovsky Victor Y. At the center of eukaryotic life. Cell. 2002 May 31;109(5):545–548. doi: 10.1016/s0092-8674(02)00761-4. [DOI] [PubMed] [Google Scholar]
  33. Pardu M. L., Gerbi S. A., Eckhardt R. A., Gall J. G. Cytological localization of DNA complementary to ribosomal RNA in polytene chromosomes of Diptera. Chromosoma. 1970;29(3):268–290. doi: 10.1007/BF00325943. [DOI] [PubMed] [Google Scholar]
  34. Pardue M. L., Danilevskaya O. N., Lowenhaupt K., Wong J., Erby K. The gag coding region of the Drosophila telomeric retrotransposon, HeT-A, has an internal frame shift and a length polymorphic region. J Mol Evol. 1996 Dec;43(6):572–583. doi: 10.1007/BF02202105. [DOI] [PubMed] [Google Scholar]
  35. Sinclair D. A., Schulze S., Silva E., Fitzpatrick K. A., Honda B. M. Essential genes in autosomal heterochromatin of Drosophila melanogaster. Genetica. 2000;109(1-2):9–18. doi: 10.1023/a:1026500620158. [DOI] [PubMed] [Google Scholar]
  36. Smith A. V., Orr-Weaver T. L. The regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. Development. 1991 Aug;112(4):997–1008. doi: 10.1242/dev.112.4.997. [DOI] [PubMed] [Google Scholar]
  37. Swergold G. D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol. 1990 Dec;10(12):6718–6729. doi: 10.1128/mcb.10.12.6718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  39. Tomlinson A. The cellular dynamics of pattern formation in the eye of Drosophila. J Embryol Exp Morphol. 1985 Oct;89:313–331. [PubMed] [Google Scholar]
  40. Wallrath L. L. Drosophila telomeric transgenes provide insights on mechanisms of gene silencing. Genetica. 2000;109(1-2):25–33. doi: 10.1023/a:1026556705137. [DOI] [PubMed] [Google Scholar]
  41. Weiler K. S., Wakimoto B. T. Chromosome rearrangements induce both variegated and reduced, uniform expression of heterochromatic genes in a development-specific manner. Genetics. 1998 Jul;149(3):1451–1464. doi: 10.1093/genetics/149.3.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Young B. S., Pession A., Traverse K. L., French C., Pardue M. L. Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell. 1983 Aug;34(1):85–94. doi: 10.1016/0092-8674(83)90138-1. [DOI] [PubMed] [Google Scholar]