A microsatellite variability screen for positive selection associated with the "out of Africa" habitat expansion of Drosophila melanogaster (original) (raw)
Abstract
We report a "hitchhiking mapping" study in D. melanogaster, which searches for genomic regions with reduced variability. The study's aim was to identify selective sweeps associated with the "out of Africa" habitat expansion. We scanned 103 microsatellites on chromosome 3 and 102 microsatellites on the X chromosome for reduced variability in non-African populations. When the chromosomes were analyzed separately, the number of loci with a significant reduction in variability only slightly exceeded the expectation under neutrality--six loci on the third chromosome and four loci on the X chromosome. However, non-African populations also have a more pronounced average loss in variability on the X chromosomes as compared to the third chromosome, which suggests the action of selection. Therefore, comparing the X chromosome to the autosome yields a higher number of significantly reduced loci. However, a more pronounced loss of variability on the X chromosome may be caused by demographic events rather than by natural selection. We therefore explored a range of demographic scenarios and found that some of these captured most, but not all aspects of our data. More theoretical work is needed to evaluate how demographic events might differentially affect X chromosomes and autosomes and to estimate the most likely scenario associated with the out of Africa expansion of D. melanogaster.
Full Text
The Full Text of this article is available as a PDF (130.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andolfatto P. Adaptive hitchhiking effects on genome variability. Curr Opin Genet Dev. 2001 Dec;11(6):635–641. doi: 10.1016/s0959-437x(00)00246-x. [DOI] [PubMed] [Google Scholar]
- Andolfatto P. Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 2001 Mar;18(3):279–290. doi: 10.1093/oxfordjournals.molbev.a003804. [DOI] [PubMed] [Google Scholar]
- Bachtrog D., Weiss S., Zangerl B., Brem G., Schlötterer C. Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol Biol Evol. 1999 May;16(5):602–610. doi: 10.1093/oxfordjournals.molbev.a026142. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
- Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bustamante Carlos D., Nielsen Rasmus, Sawyer Stanley A., Olsen Kenneth M., Purugganan Michael D., Hartl Daniel L. The cost of inbreeding in Arabidopsis. Nature. 2002 Apr 4;416(6880):531–534. doi: 10.1038/416531a. [DOI] [PubMed] [Google Scholar]
- Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
- Caracristi G., Schlötterer C. Genetic differentiation between American and European Drosophila melanogaster populations could be attributed to admixture of African alleles. Mol Biol Evol. 2003 Apr 2;20(5):792–799. doi: 10.1093/molbev/msg091. [DOI] [PubMed] [Google Scholar]
- Charlesworth B. Measures of divergence between populations and the effect of forces that reduce variability. Mol Biol Evol. 1998 May;15(5):538–543. doi: 10.1093/oxfordjournals.molbev.a025953. [DOI] [PubMed] [Google Scholar]
- Charlesworth B. The effect of life-history and mode of inheritance on neutral genetic variability. Genet Res. 2001 Apr;77(2):153–166. doi: 10.1017/s0016672301004979. [DOI] [PubMed] [Google Scholar]
- Colson I., Goldstein D. B. Evidence for complex mutations at microsatellite loci in Drosophila. Genetics. 1999 Jun;152(2):617–627. doi: 10.1093/genetics/152.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Comeron J. M., Kreitman M., Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. doi: 10.1093/genetics/151.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornuet J. M., Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996 Dec;144(4):2001–2014. doi: 10.1093/genetics/144.4.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daborn P., Boundy S., Yen J., Pittendrigh B., ffrench-Constant R. DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics. 2001 Oct 5;266(4):556–563. doi: 10.1007/s004380100531. [DOI] [PubMed] [Google Scholar]
- David J. R., Capy P. Genetic variation of Drosophila melanogaster natural populations. Trends Genet. 1988 Apr;4(4):106–111. doi: 10.1016/0168-9525(88)90098-4. [DOI] [PubMed] [Google Scholar]
- Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fay J. C., Wu C. I. A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Mol Biol Evol. 1999 Jul;16(7):1003–1005. doi: 10.1093/oxfordjournals.molbev.a026175. [DOI] [PubMed] [Google Scholar]
- Fay J. C., Wu C. I. The neutral theory in the genomic era. Curr Opin Genet Dev. 2001 Dec;11(6):642–646. doi: 10.1016/s0959-437x(00)00247-1. [DOI] [PubMed] [Google Scholar]
- Fay J. C., Wyckoff G. J., Wu C. I. Positive and negative selection on the human genome. Genetics. 2001 Jul;158(3):1227–1234. doi: 10.1093/genetics/158.3.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fay Justin C., Wyckoff Gerald J., Wu Chung-I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature. 2002 Feb 28;415(6875):1024–1026. doi: 10.1038/4151024a. [DOI] [PubMed] [Google Scholar]
- Fernando Vázquez J., Pérez T., Albornoz J., Domínguez A. Estimation of microsatellite mutation rates in Drosophila melanogaster. Genet Res. 2000 Dec;76(3):323–326. doi: 10.1017/s0016672300004791. [DOI] [PubMed] [Google Scholar]
- Galtier N., Depaulis F., Barton N. H. Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics. 2000 Jun;155(2):981–987. doi: 10.1093/genetics/155.2.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein D. B., Clark A. G. Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids Res. 1995 Oct 11;23(19):3882–3886. doi: 10.1093/nar/23.19.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harr B., Schlötterer C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics. 2000 Jul;155(3):1213–1220. doi: 10.1093/genetics/155.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huttley G. A., Easteal S., Southey M. C., Tesoriero A., Giles G. G., McCredie M. R., Hopper J. L., Venter D. J. Adaptive evolution of the tumour suppressor BRCA1 in humans and chimpanzees. Australian Breast Cancer Family Study. Nat Genet. 2000 Aug;25(4):410–413. doi: 10.1038/78092. [DOI] [PubMed] [Google Scholar]
- Huttley G. A., Smith M. W., Carrington M., O'Brien S. J. A scan for linkage disequilibrium across the human genome. Genetics. 1999 Aug;152(4):1711–1722. doi: 10.1093/genetics/152.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauer M., Zangerl B., Dieringer D., Schlötterer C. Chromosomal patterns of microsatellite variability contrast sharply in African and non-African populations of Drosophila melanogaster. Genetics. 2002 Jan;160(1):247–256. doi: 10.1093/genetics/160.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Yuseob, Stephan Wolfgang. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics. 2002 Feb;160(2):765–777. doi: 10.1093/genetics/160.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohn M. H., Pelz H. J., Wayne R. K. Natural selection mapping of the warfarin-resistance gene. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7911–7915. doi: 10.1073/pnas.97.14.7911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewontin R. C., Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973 May;74(1):175–195. doi: 10.1093/genetics/74.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low G. C., Mott F. W. The Examination of the Tissues of the Case of Sleeping Sickness in a European. Br Med J. 1904 Apr 30;1(2261):1000–1002. doi: 10.1136/bmj.1.2261.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
- Orr H. A., Betancourt A. J. Haldane's sieve and adaptation from the standing genetic variation. Genetics. 2001 Feb;157(2):875–884. doi: 10.1093/genetics/157.2.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payseur Bret A., Cutter Asher D., Nachman Michael W. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability. Mol Biol Evol. 2002 Jul;19(7):1143–1153. doi: 10.1093/oxfordjournals.molbev.a004172. [DOI] [PubMed] [Google Scholar]
- Schlötterer Christian. A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics. 2002 Feb;160(2):753–763. doi: 10.1093/genetics/160.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlötterer Christian, Harr Bettina. Single nucleotide polymorphisms derived from ancestral populations show no evidence for biased diversity estimates in Drosophila melanogaster. Mol Ecol. 2002 May;11(5):947–950. doi: 10.1046/j.1365-294x.2002.01491.x. [DOI] [PubMed] [Google Scholar]
- Schug M. D., Hutter C. M., Wetterstrand K. A., Gaudette M. S., Mackay T. F., Aquadro C. F. The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol. 1998 Dec;15(12):1751–1760. doi: 10.1093/oxfordjournals.molbev.a025901. [DOI] [PubMed] [Google Scholar]
- Schug M. D., Mackay T. F., Aquadro C. F. Low mutation rates of microsatellite loci in Drosophila melanogaster. Nat Genet. 1997 Jan;15(1):99–102. doi: 10.1038/ng0197-99. [DOI] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Vigouroux Y., McMullen M., Hittinger C. T., Houchins K., Schulz L., Kresovich S., Matsuoka Y., Doebley J. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci U S A. 2002 Jul 8;99(15):9650–9655. doi: 10.1073/pnas.112324299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wall Jeffrey D., Andolfatto Peter, Przeworski Molly. Testing models of selection and demography in Drosophila simulans. Genetics. 2002 Sep;162(1):203–216. doi: 10.1093/genetics/162.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiehe T. The effect of selective sweeps on the variance of the allele distribution of a linked multiallele locus: hitchhiking of microsatellites. Theor Popul Biol. 1998 Jun;53(3):272–283. doi: 10.1006/tpbi.1997.1346. [DOI] [PubMed] [Google Scholar]
- Wootton John C., Feng Xiaorong, Ferdig Michael T., Cooper Roland A., Mu Jianbing, Baruch Dror I., Magill Alan J., Su Xin-Zhuan. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature. 2002 Jul 18;418(6895):320–323. doi: 10.1038/nature00813. [DOI] [PubMed] [Google Scholar]