Nondisjunction of chromosome 15: origin and recombination (original) (raw)

. 1993 Sep;53(3):740–751.

Abstract

Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N = 27) and Angelman syndrome patients (N = 5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination are utilized. Standard methods of centromere mapping are employed to determine the level of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, most paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome.

740

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonarakis S. E., Avramopoulos D., Blouin J. L., Talbot C. C., Jr, Schinzel A. A. Mitotic errors in somatic cells cause trisomy 21 in about 4.5% of cases and are not associated with advanced maternal age. Nat Genet. 1993 Feb;3(2):146–150. doi: 10.1038/ng0293-146. [DOI] [PubMed] [Google Scholar]
  2. Antonarakis S. E., Chakravarti A., Warren A. C., Slaugenhaupt S. A., Wong C., Halloran S. L., Metaxotou C. Reduced recombination rate on chromosomes 21 that have undergone nondisjunction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):185–190. doi: 10.1101/sqb.1986.051.01.022. [DOI] [PubMed] [Google Scholar]
  3. Antonarakis S. E. Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down Syndrome Collaborative Group. N Engl J Med. 1991 Mar 28;324(13):872–876. doi: 10.1056/NEJM199103283241302. [DOI] [PubMed] [Google Scholar]
  4. Antonarakis S. E. Third International Workshop on Human Chromosome 21. Genomics. 1992 Dec;14(4):1126–1132. doi: 10.1016/s0888-7543(05)80148-x. [DOI] [PubMed] [Google Scholar]
  5. Bowcock A. M., Barnes R. I., White R. L., Kruse T. A., Tsipouras P., Sarfarazi M., Jenkins T., Viljoen C., Litt M., Kramer P. L. The CEPH consortium linkage map of human chromosome 15q. Genomics. 1992 Dec;14(4):833–840. doi: 10.1016/s0888-7543(05)80101-6. [DOI] [PubMed] [Google Scholar]
  6. Bridges C. B. Non-Disjunction as Proof of the Chromosome Theory of Heredity (Concluded). Genetics. 1916 Mar;1(2):107–163. doi: 10.1093/genetics/1.2.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chakravarti A., Majumder P. P., Slaugenhaupt S. A., Deka R., Warren A. C., Surti U., Ferrell R. E., Antonarakis S. E. Gene-centromere mapping and the study of non-disjunction in autosomal trisomies and ovarian teratomas. Prog Clin Biol Res. 1989;311:45–79. [PubMed] [Google Scholar]
  8. Chakravarti A., Slaugenhaupt S. A. Methods for studying recombination on chromosomes that undergo nondisjunction. Genomics. 1987 Sep;1(1):35–42. doi: 10.1016/0888-7543(87)90102-9. [DOI] [PubMed] [Google Scholar]
  9. Engel E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet. 1980;6(2):137–143. doi: 10.1002/ajmg.1320060207. [DOI] [PubMed] [Google Scholar]
  10. Hassold T. J., Pettay D., Freeman S. B., Grantham M., Takaesu N. Molecular studies of non-disjunction in trisomy 16. J Med Genet. 1991 Mar;28(3):159–162. doi: 10.1136/jmg.28.3.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hultén M. A. The origin of aneuploidy: bivalent instability and the maternal age effect in trisomy 21 Down syndrome. Am J Med Genet Suppl. 1990;7:160–161. doi: 10.1002/ajmg.1320370732. [DOI] [PubMed] [Google Scholar]
  12. Lorda-Sanchez I., Binkert F., Maechler M., Robinson W. P., Schinzel A. A. Reduced recombination and paternal age effect in Klinefelter syndrome. Hum Genet. 1992 Jul;89(5):524–530. doi: 10.1007/BF00219178. [DOI] [PubMed] [Google Scholar]
  13. MERRIAM J. R., FROST J. N. EXCHANGE AND NONDISJUNCTION OF THE X CHROMOSOMES IN FEMALE DROSOPHILA MELANOGASTER. Genetics. 1964 Jan;49:109–122. doi: 10.1093/genetics/49.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Malcolm S., Clayton-Smith J., Nichols M., Robb S., Webb T., Armour J. A., Jeffreys A. J., Pembrey M. E. Uniparental paternal disomy in Angelman's syndrome. Lancet. 1991 Mar 23;337(8743):694–697. doi: 10.1016/0140-6736(91)90278-w. [DOI] [PubMed] [Google Scholar]
  15. Martin R. H., Ko E., Rademaker A. Distribution of aneuploidy in human gametes: comparison between human sperm and oocytes. Am J Med Genet. 1991 Jun 1;39(3):321–331. doi: 10.1002/ajmg.1320390315. [DOI] [PubMed] [Google Scholar]
  16. Mascari M. J., Gottlieb W., Rogan P. K., Butler M. G., Waller D. A., Armour J. A., Jeffreys A. J., Ladda R. L., Nicholls R. D. The frequency of uniparental disomy in Prader-Willi syndrome. Implications for molecular diagnosis. N Engl J Med. 1992 Jun 11;326(24):1599–1607. doi: 10.1056/NEJM199206113262404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morton N. E., Keats B. J., Jacobs P. A., Hassold T., Pettay D., Harvey J., Andrews V. A centromere map of the X chromosome from trisomies of maternal origin. Ann Hum Genet. 1990 Jan;54(Pt 1):39–47. doi: 10.1111/j.1469-1809.1990.tb00359.x. [DOI] [PubMed] [Google Scholar]
  18. Morton N. E., MacLean C. J., Lew R. Tests of hypotheses on recombination frequencies. Genet Res. 1985 Jun;45(3):279–286. doi: 10.1017/s0016672300022266. [DOI] [PubMed] [Google Scholar]
  19. Morton N. E., MacLean C. J. Multilocus recombination frequencies. Genet Res. 1984 Aug;44(1):99–107. doi: 10.1017/s0016672300026276. [DOI] [PubMed] [Google Scholar]
  20. Morton N. E., Wu D., Jacobs P. A. Origin of sex chromosome aneuploidy. Ann Hum Genet. 1988 May;52(Pt 2):85–92. doi: 10.1111/j.1469-1809.1988.tb01083.x. [DOI] [PubMed] [Google Scholar]
  21. Mutirangura A., Greenberg F., Butler M. G., Malcolm S., Nicholls R. D., Chakravarti A., Ledbetter D. H. Multiplex PCR of three dinucleotide repeats in the Prader-Willi/Angelman critical region (15q11-q13): molecular diagnosis and mechanism of uniparental disomy. Hum Mol Genet. 1993 Feb;2(2):143–151. doi: 10.1093/hmg/2.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicholls R. D., Knoll J. H., Butler M. G., Karam S., Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989 Nov 16;342(6247):281–285. doi: 10.1038/342281a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nicholls R. D., Pai G. S., Gottlieb W., Cantú E. S. Paternal uniparental disomy of chromosome 15 in a child with Angelman syndrome. Ann Neurol. 1992 Oct;32(4):512–518. doi: 10.1002/ana.410320406. [DOI] [PubMed] [Google Scholar]
  24. Rao D. C., Morton N. E., Lindsten J., Hultén M., Yee S. A mapping function for man. Hum Hered. 1977;27(2):99–104. doi: 10.1159/000152856. [DOI] [PubMed] [Google Scholar]
  25. Robinson W. P., Bottani A., Xie Y. G., Balakrishman J., Binkert F., Mächler M., Prader A., Schinzel A. Molecular, cytogenetic, and clinical investigations of Prader-Willi syndrome patients. Am J Hum Genet. 1991 Dec;49(6):1219–1234. [PMC free article] [PubMed] [Google Scholar]
  26. Robinson W. P., Spiegel R., Schinzel A. A. Deletion breakpoints associated with the Prader-Willi and Angelman syndromes (15q11-q13) are not sites of high homologous recombination. Hum Genet. 1993 Mar;91(2):181–184. doi: 10.1007/BF00222722. [DOI] [PubMed] [Google Scholar]
  27. Roeder G. S. Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation. Trends Genet. 1990 Dec;6(12):385–389. doi: 10.1016/0168-9525(90)90297-j. [DOI] [PubMed] [Google Scholar]
  28. Shahar S., Morton N. E. Origin of teratomas and twins. Hum Genet. 1986 Nov;74(3):215–218. doi: 10.1007/BF00282536. [DOI] [PubMed] [Google Scholar]
  29. Sherman S. L., Takaesu N., Freeman S. B., Grantham M., Phillips C., Blackston R. D., Jacobs P. A., Cockwell A. E., Freeman V., Uchida I. Trisomy 21: association between reduced recombination and nondisjunction. Am J Hum Genet. 1991 Sep;49(3):608–620. [PMC free article] [PubMed] [Google Scholar]
  30. Warren A. C., Chakravarti A., Wong C., Slaugenhaupt S. A., Halloran S. L., Watkins P. C., Metaxotou C., Antonarakis S. E. Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down syndrome. Science. 1987 Aug 7;237(4815):652–654. doi: 10.1126/science.2955519. [DOI] [PubMed] [Google Scholar]