Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell (original) (raw)

Abstract

Epstein-Barr (EBV) is a powerful immortalizing virus for human B lymphocytes in vitro and is associated with several human neoplasias in vivo. Previously, we have shown that the majority of EBV-infected cells in the peripheral blood of healthy, persistently infected individuals do not express the activated phenotype, e.g., high levels of cell surface CD23 and CD80 (B7), characteristically expressed on in vitro-immortalized cells. Here, we show that > or = 90% of the CD23-, virus-infected cells in the peripheral blood are in G0 and therefore resting. The remaining cells may be G1 arrested, but we were unable to detect a significant number of cells traversing the S-G2-M stages of the cell cycle. The mRNA for LMP2A, but not EBNA1 originating from Qp, was readily detected in this population, and these cells appear competent in the processing and presentation of antigen by class I major histocompatibility complex. We propose that these resting B cells are the site of long-term latent persistence for EBV. We further propose that the persistence of the virus in a resting B7- B cell provides an important mechanism to escape immunosurveillance. The demonstration that EBV can persist latently in a resting B cell means that the immortalizing functions of EBV can be down regulated in a normal B cell. This conclusion has important implications for understanding and controlling EBV-associated neoplasia.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos I., Hummel M., Kreschel C., Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995 Feb 1;85(3):744–750. [PubMed] [Google Scholar]
  2. Azuma M., Cayabyab M., Buck D., Phillips J. H., Lanier L. L. CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. J Exp Med. 1992 Feb 1;175(2):353–360. doi: 10.1084/jem.175.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen F., Zou J. Z., di Renzo L., Winberg G., Hu L. F., Klein E., Klein G., Ernberg I. A subpopulation of normal B cells latently infected with Epstein-Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1. J Virol. 1995 Jun;69(6):3752–3758. doi: 10.1128/jvi.69.6.3752-3758.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Decker L. L., Klaman L. D., Thorley-Lawson D. A. Detection of the latent form of Epstein-Barr virus DNA in the peripheral blood of healthy individuals. J Virol. 1996 May;70(5):3286–3289. doi: 10.1128/jvi.70.5.3286-3289.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gerdes J., Lemke H., Baisch H., Wacker H. H., Schwab U., Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984 Oct;133(4):1710–1715. [PubMed] [Google Scholar]
  6. Gregory C. D., Tursz T., Edwards C. F., Tetaud C., Talbot M., Caillou B., Rickinson A. B., Lipinski M. Identification of a subset of normal B cells with a Burkitt's lymphoma (BL)-like phenotype. J Immunol. 1987 Jul 1;139(1):313–318. [PubMed] [Google Scholar]
  7. Hall K. T., Boumsell L., Schultze J. L., Boussiotis V. A., Dorfman D. M., Cardoso A. A., Bensussan A., Nadler L. M., Freeman G. J. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11780–11785. doi: 10.1073/pnas.93.21.11780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang A. Y., Golumbek P., Ahmadzadeh M., Jaffee E., Pardoll D., Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science. 1994 May 13;264(5161):961–965. doi: 10.1126/science.7513904. [DOI] [PubMed] [Google Scholar]
  9. Hurley E. A., Thorley-Lawson D. A. B cell activation and the establishment of Epstein-Barr virus latency. J Exp Med. 1988 Dec 1;168(6):2059–2075. doi: 10.1084/jem.168.6.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacob M. C., Favre M., Bensa J. C. Membrane cell permeabilization with saponin and multiparametric analysis by flow cytometry. Cytometry. 1991;12(6):550–558. doi: 10.1002/cyto.990120612. [DOI] [PubMed] [Google Scholar]
  11. Karajannis M. A., Hummel M., Anagnostopoulos I., Stein H. Strict lymphotropism of Epstein-Barr virus during acute infectious mononucleosis in nonimmunocompromised individuals. Blood. 1997 Apr 15;89(8):2856–2862. [PubMed] [Google Scholar]
  12. Khan G., Miyashita E. M., Yang B., Babcock G. J., Thorley-Lawson D. A. Is EBV persistence in vivo a model for B cell homeostasis? Immunity. 1996 Aug;5(2):173–179. doi: 10.1016/s1074-7613(00)80493-8. [DOI] [PubMed] [Google Scholar]
  13. Klein G. Epstein-Barr virus strategy in normal and neoplastic B cells. Cell. 1994 Jun 17;77(6):791–793. doi: 10.1016/0092-8674(94)90125-2. [DOI] [PubMed] [Google Scholar]
  14. Levitskaya J., Coram M., Levitsky V., Imreh S., Steigerwald-Mullen P. M., Klein G., Kurilla M. G., Masucci M. G. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995 Jun 22;375(6533):685–688. doi: 10.1038/375685a0. [DOI] [PubMed] [Google Scholar]
  15. Lewin N., Aman P., Masucci M. G., Klein E., Klein G., Oberg B., Strander H., Henle W., Henle G. Characterization of EBV-carrying B-cell populations in healthy seropositive individuals with regard to density, release of transforming virus and spontaneous outgrowth. Int J Cancer. 1987 Apr 15;39(4):472–476. doi: 10.1002/ijc.2910390411. [DOI] [PubMed] [Google Scholar]
  16. Masucci M. G., Ernberg I. Epstein-Barr virus: adaptation to a life within the immune system. Trends Microbiol. 1994 Apr;2(4):125–130. doi: 10.1016/0966-842x(94)90599-1. [DOI] [PubMed] [Google Scholar]
  17. Miller C. L., Burkhardt A. L., Lee J. H., Stealey B., Longnecker R., Bolen J. B., Kieff E. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995 Feb;2(2):155–166. doi: 10.1016/s1074-7613(95)80040-9. [DOI] [PubMed] [Google Scholar]
  18. Miyashita E. M., Yang B., Lam K. M., Crawford D. H., Thorley-Lawson D. A. A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell. 1995 Feb 24;80(4):593–601. doi: 10.1016/0092-8674(95)90513-8. [DOI] [PubMed] [Google Scholar]
  19. Miyashita E., Thorley-Lawson D. A. A new form of Epstein-Barr virus latency in vivo. Curr Top Microbiol Immunol. 1995;194:135–144. doi: 10.1007/978-3-642-79275-5_17. [DOI] [PubMed] [Google Scholar]
  20. Qu L., Rowe D. T. Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol. 1992 Jun;66(6):3715–3724. doi: 10.1128/jvi.66.6.3715-3724.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rickinson A. B., Yao Q. Y., Wallace L. E. The Epstein-Barr virus as a model of virus-host interactions. Br Med Bull. 1985 Jan;41(1):75–79. doi: 10.1093/oxfordjournals.bmb.a072030. [DOI] [PubMed] [Google Scholar]
  22. Robinson J., Smith D., Niederman J. Mitotic EBNA-positive lymphocytes in peripheral blood during infectious mononucleosis. Nature. 1980 Sep 25;287(5780):334–335. doi: 10.1038/287334a0. [DOI] [PubMed] [Google Scholar]
  23. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J. 1987 Sep;6(9):2743–2751. doi: 10.1002/j.1460-2075.1987.tb02568.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stout R. D., Suttles J. T cells bearing the CD44hi "memory" phenotype display characteristics of activated cells in G1 stage of cell cycle. Cell Immunol. 1992 May;141(2):433–443. doi: 10.1016/0008-8749(92)90161-h. [DOI] [PubMed] [Google Scholar]
  25. Tao Q., Srivastava G., Chan A. C., Chung L. P., Loke S. L., Ho F. C. Evidence for lytic infection by Epstein-Barr virus in mucosal lymphocytes instead of nasopharyngeal epithelial cells in normal individuals. J Med Virol. 1995 Jan;45(1):71–77. doi: 10.1002/jmv.1890450114. [DOI] [PubMed] [Google Scholar]
  26. Tao Q., Srivastava G., Chan A. C., Ho F. C. Epstein-Barr-virus-infected nasopharyngeal intraepithelial lymphocytes. Lancet. 1995 May 20;345(8960):1309–1310. doi: 10.1016/s0140-6736(95)90960-5. [DOI] [PubMed] [Google Scholar]
  27. Thorley-Lawson D. A. Immunological responses to Epstein-Barr virus infection and the pathogenesis of EBV-induced diseases. Biochim Biophys Acta. 1989 Feb;948(3):263–286. doi: 10.1016/0304-419x(89)90002-4. [DOI] [PubMed] [Google Scholar]
  28. Thorley-Lawson D. A., Mann K. P. Early events in Epstein-Barr virus infection provide a model for B cell activation. J Exp Med. 1985 Jul 1;162(1):45–59. doi: 10.1084/jem.162.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thorley-Lawson D. A., Miyashita E. M., Khan G. Epstein-Barr virus and the B cell: that's all it takes. Trends Microbiol. 1996 May;4(5):204–208. doi: 10.1016/s0966-842x(96)90020-7. [DOI] [PubMed] [Google Scholar]
  30. Tierney R. J., Steven N., Young L. S., Rickinson A. B. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol. 1994 Nov;68(11):7374–7385. doi: 10.1128/jvi.68.11.7374-7385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu T. C., Huang A. Y., Jaffee E. M., Levitsky H. I., Pardoll D. M. A reassessment of the role of B7-1 expression in tumor rejection. J Exp Med. 1995 Nov 1;182(5):1415–1421. doi: 10.1084/jem.182.5.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yao Q. Y., Czarnecka H., Rickinson A. B. Spontaneous outgrowth of Epstein-Barr virus-positive B-cell lines from circulating human B cells of different buoyant densities. Int J Cancer. 1991 May 10;48(2):253–257. doi: 10.1002/ijc.2910480217. [DOI] [PubMed] [Google Scholar]
  33. Yates J. L., Warren N., Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. 1985 Feb 28-Mar 6Nature. 313(6005):812–815. doi: 10.1038/313812a0. [DOI] [PubMed] [Google Scholar]