The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection (original) (raw)

Abstract

Different patterns of viral replication correlate with the natural history of disease progression in humans and macaques infected with human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), respectively. However, the viral and host factors influencing these patterns of viral replication in vivo are poorly understood. We intensively studied viral replication in macaques receiving identical inocula of SIV. Marked differences in viral replication patterns were apparent within the first week following inoculation, a time prior to the development of measurable specific immune effector responses to viral antigens. Plasma viral RNA levels measured on day 7 postinoculation correlated with levels measured in the postacute phase of infection. Differences in the susceptibility of host cells from different animals to in vitro SIV infection correlated with the permissiveness of the animals for early in vivo viral replication and hence with the postacute set point level of plasma viremia. These results suggest that host factors that exert their effects prior to full development of specific immune responses are critical in establishing the in vivo viral replication pattern and associated clinical course in subjects infected with SIV and, by extension, with HIV-1.

Full Text

The Full Text of this article is available as a PDF (140.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
  2. Baskin G. B., Martin L. N., Murphey-Corb M., Hu F. S., Kuebler D., Davison B. Distribution of SIV in lymph nodes of serially sacrificed rhesus monkeys. AIDS Res Hum Retroviruses. 1995 Feb;11(2):273–285. doi: 10.1089/aid.1995.11.273. [DOI] [PubMed] [Google Scholar]
  3. Benveniste O., Vaslin B., Le Grand R., Cheret A., Matheux F., Theodoro F., Cranage M. P., Dormont D. Comparative interleukin (IL-2)/interferon IFN-gamma and IL-4/IL-10 responses during acute infection of macaques inoculated with attenuated nef-truncated or pathogenic SICmac251 virus. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3658–3663. doi: 10.1073/pnas.93.8.3658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berson J. F., Long D., Doranz B. J., Rucker J., Jirik F. R., Doms R. W. A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol. 1996 Sep;70(9):6288–6295. doi: 10.1128/jvi.70.9.6288-6295.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borrow P., Lewicki H., Hahn B. H., Shaw G. M., Oldstone M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994 Sep;68(9):6103–6110. doi: 10.1128/jvi.68.9.6103-6110.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chakrabarti L., Cumont M. C., Montagnier L., Hurtrel B. Variable course of primary simian immunodeficiency virus infection in lymph nodes: relation to disease progression. J Virol. 1994 Oct;68(10):6634–6643. doi: 10.1128/jvi.68.10.6634-6643.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G., Newman W. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996 Jun 28;85(7):1135–1148. doi: 10.1016/s0092-8674(00)81313-6. [DOI] [PubMed] [Google Scholar]
  8. Clark S. J., Saag M. S., Decker W. D., Campbell-Hill S., Roberson J. L., Veldkamp P. J., Kappes J. C., Hahn B. H., Shaw G. M. High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N Engl J Med. 1991 Apr 4;324(14):954–960. doi: 10.1056/NEJM199104043241404. [DOI] [PubMed] [Google Scholar]
  9. Clerici M., Shearer G. M. The Th1-Th2 hypothesis of HIV infection: new insights. Immunol Today. 1994 Dec;15(12):575–581. doi: 10.1016/0167-5699(94)90220-8. [DOI] [PubMed] [Google Scholar]
  10. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995 Dec 15;270(5243):1811–1815. doi: 10.1126/science.270.5243.1811. [DOI] [PubMed] [Google Scholar]
  11. Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
  12. Daar E. S., Moudgil T., Meyer R. D., Ho D. D. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med. 1991 Apr 4;324(14):961–964. doi: 10.1056/NEJM199104043241405. [DOI] [PubMed] [Google Scholar]
  13. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996 Jun 20;381(6584):661–666. doi: 10.1038/381661a0. [DOI] [PubMed] [Google Scholar]
  14. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996 Jun 28;85(7):1149–1158. doi: 10.1016/s0092-8674(00)81314-8. [DOI] [PubMed] [Google Scholar]
  15. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996 Jun 20;381(6584):667–673. doi: 10.1038/381667a0. [DOI] [PubMed] [Google Scholar]
  16. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996 May 10;272(5263):872–877. doi: 10.1126/science.272.5263.872. [DOI] [PubMed] [Google Scholar]
  17. Forsthuber T., Yip H. C., Lehmann P. V. Induction of TH1 and TH2 immunity in neonatal mice. Science. 1996 Mar 22;271(5256):1728–1730. doi: 10.1126/science.271.5256.1728. [DOI] [PubMed] [Google Scholar]
  18. Goldstein S., Elkins W. R., London W. T., Hahn A., Goeken R., Martin J. E., Hirsch V. M. Immunization with whole inactivated vaccine protects from infection by SIV grown in human but not macaque cells. J Med Primatol. 1994 Feb-May;23(2-3):75–82. doi: 10.1111/j.1600-0684.1994.tb00105.x. [DOI] [PubMed] [Google Scholar]
  19. Haase A. T., Henry K., Zupancic M., Sedgewick G., Faust R. A., Melroe H., Cavert W., Gebhard K., Staskus K., Zhang Z. Q. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science. 1996 Nov 8;274(5289):985–989. doi: 10.1126/science.274.5289.985. [DOI] [PubMed] [Google Scholar]
  20. Haigwood N. L., Watson A., Sutton W. F., McClure J., Lewis A., Ranchalis J., Travis B., Voss G., Letvin N. L., Hu S. L. Passive immune globulin therapy in the SIV/macaque model: early intervention can alter disease profile. Immunol Lett. 1996 Jun;51(1-2):107–114. doi: 10.1016/0165-2478(96)02563-1. [DOI] [PubMed] [Google Scholar]
  21. Hirsch V. M., Dapolito G., Johnson P. R., Elkins W. R., London W. T., Montali R. J., Goldstein S., Brown C. Induction of AIDS by simian immunodeficiency virus from an African green monkey: species-specific variation in pathogenicity correlates with the extent of in vivo replication. J Virol. 1995 Feb;69(2):955–967. doi: 10.1128/jvi.69.2.955-967.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hirsch V. M., Fuerst T. R., Sutter G., Carroll M. W., Yang L. C., Goldstein S., Piatak M., Jr, Elkins W. R., Alvord W. G., Montefiori D. C. Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SIV)-infected macaques: effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara. J Virol. 1996 Jun;70(6):3741–3752. doi: 10.1128/jvi.70.6.3741-3752.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hirsch V., Adger-Johnson D., Campbell B., Goldstein S., Brown C., Elkins W. R., Montefiori D. C. A molecularly cloned, pathogenic, neutralization-resistant simian immunodeficiency virus, SIVsmE543-3. J Virol. 1997 Feb;71(2):1608–1620. doi: 10.1128/jvi.71.2.1608-1620.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  25. Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994 Jul;68(7):4650–4655. doi: 10.1128/jvi.68.7.4650-4655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Letvin N. L., Reimann K. A., Yasutomi Y., Ringler D. J., Yamamoto H. The SIVmac specific cytotoxic T lymphocyte response in the acutely infected rhesus monkey. Curr Top Microbiol Immunol. 1994;188:175–184. doi: 10.1007/978-3-642-78536-8_10. [DOI] [PubMed] [Google Scholar]
  27. Levy J. A., Mackewicz C. E., Barker E. Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol Today. 1996 May;17(5):217–224. doi: 10.1016/0167-5699(96)10011-6. [DOI] [PubMed] [Google Scholar]
  28. Mackewicz C. E., Yang L. C., Lifson J. D., Levy J. A. Non-cytolytic CD8 T-cell anti-HIV responses in primary HIV-1 infection. Lancet. 1994 Dec 17;344(8938):1671–1673. doi: 10.1016/s0140-6736(94)90459-6. [DOI] [PubMed] [Google Scholar]
  29. Mellors J. W., Kingsley L. A., Rinaldo C. R., Jr, Todd J. A., Hoo B. S., Kokka R. P., Gupta P. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med. 1995 Apr 15;122(8):573–579. doi: 10.7326/0003-4819-122-8-199504150-00003. [DOI] [PubMed] [Google Scholar]
  30. Mellors J. W., Rinaldo C. R., Jr, Gupta P., White R. M., Todd J. A., Kingsley L. A. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996 May 24;272(5265):1167–1170. doi: 10.1126/science.272.5265.1167. [DOI] [PubMed] [Google Scholar]
  31. Michael N. L., Brown A. E., Voigt R. F., Frankel S. S., Mascola J. R., Brothers K. S., Louder M., Birx D. L., Cassol S. A. Rapid disease progression without seroconversion following primary human immunodeficiency virus type 1 infection--evidence for highly susceptible human hosts. J Infect Dis. 1997 Jun;175(6):1352–1359. doi: 10.1086/516467. [DOI] [PubMed] [Google Scholar]
  32. Moore J. P., Cao Y., Ho D. D., Koup R. A. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J Virol. 1994 Aug;68(8):5142–5155. doi: 10.1128/jvi.68.8.5142-5155.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moskophidis D., Battegay M., van den Broek M., Laine E., Hoffmann-Rohrer U., Zinkernagel R. M. Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus. J Gen Virol. 1995 Feb;76(Pt 2):381–391. doi: 10.1099/0022-1317-76-2-381. [DOI] [PubMed] [Google Scholar]
  34. Moskophidis D., Lechner F., Hengartner H., Zinkernagel R. M. MHC class I and non-MHC-linked capacity for generating an anti-viral CTL response determines susceptibility to CTL exhaustion and establishment of virus persistence in mice. J Immunol. 1994 May 15;152(10):4976–4983. [PubMed] [Google Scholar]
  35. Nowak M. A., Bangham C. R. Population dynamics of immune responses to persistent viruses. Science. 1996 Apr 5;272(5258):74–79. doi: 10.1126/science.272.5258.74. [DOI] [PubMed] [Google Scholar]
  36. Nowak M. A., Lloyd A. L., Vasquez G. M., Wiltrout T. A., Wahl L. M., Bischofberger N., Williams J., Kinter A., Fauci A. S., Hirsch V. M. Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection. J Virol. 1997 Oct;71(10):7518–7525. doi: 10.1128/jvi.71.10.7518-7525.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. O'Brien T. R., Blattner W. A., Waters D., Eyster E., Hilgartner M. W., Cohen A. R., Luban N., Hatzakis A., Aledort L. M., Rosenberg P. S. Serum HIV-1 RNA levels and time to development of AIDS in the Multicenter Hemophilia Cohort Study. JAMA. 1996 Jul 10;276(2):105–110. [PubMed] [Google Scholar]
  38. Operskalski E. A., Busch M. P., Mosley J. W., Stram D. O. Comparative rates of disease progression among persons infected with the same or different HIV-1 strains. The Transfusion Safety Study Group. J Acquir Immune Defic Syndr Hum Retrovirol. 1997 Jun 1;15(2):145–150. doi: 10.1097/00042560-199706010-00008. [DOI] [PubMed] [Google Scholar]
  39. Pantaleo G., Demarest J. F., Schacker T., Vaccarezza M., Cohen O. J., Daucher M., Graziosi C., Schnittman S. S., Quinn T. C., Shaw G. M. The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):254–258. doi: 10.1073/pnas.94.1.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pantaleo G., Demarest J. F., Soudeyns H., Graziosi C., Denis F., Adelsberger J. W., Borrow P., Saag M. S., Shaw G. M., Sekaly R. P. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature. 1994 Aug 11;370(6489):463–467. doi: 10.1038/370463a0. [DOI] [PubMed] [Google Scholar]
  41. Pantaleo G., Graziosi C., Butini L., Pizzo P. A., Schnittman S. M., Kotler D. P., Fauci A. S. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9838–9842. doi: 10.1073/pnas.88.21.9838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
  43. Paxton W. A., Martin S. R., Tse D., O'Brien T. R., Skurnick J., VanDevanter N. L., Padian N., Braun J. F., Kotler D. P., Wolinsky S. M. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med. 1996 Apr;2(4):412–417. doi: 10.1038/nm0496-412. [DOI] [PubMed] [Google Scholar]
  44. Pellegrin I., Legrand E., Neau D., Bonot P., Masquelier B., Pellegrin J. L., Ragnaud J. M., Bernard N., Fleury H. J. Kinetics of appearance of neutralizing antibodies in 12 patients with primary or recent HIV-1 infection and relationship with plasma and cellular viral loads. J Acquir Immune Defic Syndr Hum Retrovirol. 1996 Apr 15;11(5):438–447. doi: 10.1097/00042560-199604150-00003. [DOI] [PubMed] [Google Scholar]
  45. Phillips A. N. Reduction of HIV concentration during acute infection: independence from a specific immune response. Science. 1996 Jan 26;271(5248):497–499. doi: 10.1126/science.271.5248.497. [DOI] [PubMed] [Google Scholar]
  46. Piatak M., Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. Determination of plasma viral load in HIV-1 infection by quantitative competitive polymerase chain reaction. AIDS. 1993 Nov;7 (Suppl 2):S65–S71. doi: 10.1097/00002030-199311002-00014. [DOI] [PubMed] [Google Scholar]
  47. Piatak M., Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993 Mar 19;259(5102):1749–1754. doi: 10.1126/science.8096089. [DOI] [PubMed] [Google Scholar]
  48. Reimann K. A., Tenner-Racz K., Racz P., Montefiori D. C., Yasutomi Y., Lin W., Ransil B. J., Letvin N. L. Immunopathogenic events in acute infection of rhesus monkeys with simian immunodeficiency virus of macaques. J Virol. 1994 Apr;68(4):2362–2370. doi: 10.1128/jvi.68.4.2362-2370.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ridge J. P., Fuchs E. J., Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science. 1996 Mar 22;271(5256):1723–1726. doi: 10.1126/science.271.5256.1723. [DOI] [PubMed] [Google Scholar]
  50. Ruprecht R. M., Baba T. W., Liska V., Bronson R., Penninck D., Greene M. F. "Attenuated" simian immunodeficiency virus in macaque neonates. AIDS Res Hum Retroviruses. 1996 Mar 20;12(5):459–460. doi: 10.1089/aid.1996.12.459. [DOI] [PubMed] [Google Scholar]
  51. Ruprecht R. M., Bronson R. Chemoprevention of retroviral infection: success is determined by virus inoculum strength and cellular immunity. DNA Cell Biol. 1994 Jan;13(1):59–66. doi: 10.1089/dna.1994.13.59. [DOI] [PubMed] [Google Scholar]
  52. Safrit J. T., Koup R. A. The immunology of primary HIV infection: which immune responses control HIV replication? Curr Opin Immunol. 1995 Aug;7(4):456–461. doi: 10.1016/0952-7915(95)80088-3. [DOI] [PubMed] [Google Scholar]
  53. Sarzotti M., Robbins D. S., Hoffman P. M. Induction of protective CTL responses in newborn mice by a murine retrovirus. Science. 1996 Mar 22;271(5256):1726–1728. doi: 10.1126/science.271.5256.1726. [DOI] [PubMed] [Google Scholar]
  54. Schacker T., Collier A. C., Hughes J., Shea T., Corey L. Clinical and epidemiologic features of primary HIV infection. Ann Intern Med. 1996 Aug 15;125(4):257–264. doi: 10.7326/0003-4819-125-4-199608150-00001. [DOI] [PubMed] [Google Scholar]
  55. Tsai C. C., Follis K. E., Sabo A., Beck T. W., Grant R. F., Bischofberger N., Benveniste R. E., Black R. Prevention of SIV infection in macaques by (R)-9-(2-phosphonylmethoxypropyl)adenine. Science. 1995 Nov 17;270(5239):1197–1199. doi: 10.1126/science.270.5239.1197. [DOI] [PubMed] [Google Scholar]
  56. Walker C. M., Moody D. J., Stites D. P., Levy J. A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986 Dec 19;234(4783):1563–1566. doi: 10.1126/science.2431484. [DOI] [PubMed] [Google Scholar]
  57. Watson A., Ranchalis J., Travis B., McClure J., Sutton W., Johnson P. R., Hu S. L., Haigwood N. L. Plasma viremia in macaques infected with simian immunodeficiency virus: plasma viral load early in infection predicts survival. J Virol. 1997 Jan;71(1):284–290. doi: 10.1128/jvi.71.1.284-290.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  59. Williams L. M., Cloyd M. W. Polymorphic human gene(s) determines differential susceptibility of CD4 lymphocytes to infection by certain HIV-1 isolates. Virology. 1991 Oct;184(2):723–728. doi: 10.1016/0042-6822(91)90442-e. [DOI] [PubMed] [Google Scholar]
  60. Yasutomi Y., Reimann K. A., Lord C. I., Miller M. D., Letvin N. L. Simian immunodeficiency virus-specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J Virol. 1993 Mar;67(3):1707–1711. doi: 10.1128/jvi.67.3.1707-1711.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zinkernagel R. M., Hengartner H. T-cell-mediated immunopathology versus direct cytolysis by virus: implications for HIV and AIDS. Immunol Today. 1994 Jun;15(6):262–268. doi: 10.1016/0167-5699(94)90005-1. [DOI] [PubMed] [Google Scholar]
  62. Zinkernagel R. M. Immunology taught by viruses. Science. 1996 Jan 12;271(5246):173–178. doi: 10.1126/science.271.5246.173. [DOI] [PubMed] [Google Scholar]
  63. Zou W., Lackner A. A., Simon M., Durand-Gasselin I., Galanaud P., Desrosiers R. C., Emilie D. Early cytokine and chemokine gene expression in lymph nodes of macaques infected with simian immunodeficiency virus is predictive of disease outcome and vaccine efficacy. J Virol. 1997 Feb;71(2):1227–1236. doi: 10.1128/jvi.71.2.1227-1236.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]