Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4 (original) (raw)

Abstract

Homologs of Drosophila Mad function as downstream mediators of the receptors for transforming growth factor beta (TGF-beta)-related factors. Two homologs, the receptor-associated Smad3 and the tumor suppressor Smad4/DPC4, synergize to induce ligand-independent TGF-beta activities and are essential mediators of the natural TGF-beta response. We now show that Smad3 and Smad4 associate in homomeric and heteromeric interactions, as assessed by yeast two-hybrid and coimmunoprecipitation analyses. Heteromeric interactions are mediated through the conserved C-terminal domains of Smad3 and Smad4. In Smad3, the homomeric interaction is mediated by the same domain. In contrast, the homomeric association of Smad4 requires both the N-terminal domain and the C-terminal domain, which by itself does not homomerize. Mutations that have been associated with impaired Mad activity in Drosophila or decreased tumor suppressor activity of Smad4/DPC4 in pancreas cancer, including a short C-terminal truncation and two point mutations in the conserved C-terminal domains, impair the ability of Smad3 and Smad4 to undergo homo- and heteromeric associations. Analyses of the biological activity of Smad3 and Smad4 and their mutants show that full signaling activity correlates with their ability to undergo efficient homo- and heteromeric interactions. Mutations that interfere with these interactions result in decreased signaling activity. Finally, we evaluated the ability of Smad3 or Smad4 to induce transcriptional activation in yeast. These results correlate the ability of individual Smads to homomerize with transcriptional activation and additionally with their biological activity in mammalian cells.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. C., Harland R. M. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev. 1996 Aug 1;10(15):1880–1889. doi: 10.1101/gad.10.15.1880. [DOI] [PubMed] [Google Scholar]
  2. Chen R. H., Miettinen P. J., Maruoka E. M., Choy L., Derynck R. A WD-domain protein that is associated with and phosphorylated by the type II TGF-beta receptor. Nature. 1995 Oct 12;377(6549):548–552. doi: 10.1038/377548a0. [DOI] [PubMed] [Google Scholar]
  3. Derynck R. TGF-beta-receptor-mediated signaling. Trends Biochem Sci. 1994 Dec;19(12):548–553. doi: 10.1016/0968-0004(94)90059-0. [DOI] [PubMed] [Google Scholar]
  4. Derynck R., Zhang Y. Intracellular signalling: the mad way to do it. Curr Biol. 1996 Oct 1;6(10):1226–1229. doi: 10.1016/s0960-9822(96)00702-6. [DOI] [PubMed] [Google Scholar]
  5. Ebner R., Chen R. H., Shum L., Lawler S., Zioncheck T. F., Lee A., Lopez A. R., Derynck R. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science. 1993 May 28;260(5112):1344–1348. doi: 10.1126/science.8388127. [DOI] [PubMed] [Google Scholar]
  6. Feng X. H., Filvaroff E. H., Derynck R. Transforming growth factor-beta (TGF-beta)-induced down-regulation of cyclin A expression requires a functional TGF-beta receptor complex. Characterization of chimeric and truncated type I and type II receptors. J Biol Chem. 1995 Oct 13;270(41):24237–24245. doi: 10.1074/jbc.270.41.24237. [DOI] [PubMed] [Google Scholar]
  7. Graff J. M., Bansal A., Melton D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell. 1996 May 17;85(4):479–487. doi: 10.1016/s0092-8674(00)81249-0. [DOI] [PubMed] [Google Scholar]
  8. Gyuris J., Golemis E., Chertkov H., Brent R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell. 1993 Nov 19;75(4):791–803. doi: 10.1016/0092-8674(93)90498-f. [DOI] [PubMed] [Google Scholar]
  9. Hahn S. A., Schutte M., Hoque A. T., Moskaluk C. A., da Costa L. T., Rozenblum E., Weinstein C. L., Fischer A., Yeo C. J., Hruban R. H. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996 Jan 19;271(5247):350–353. doi: 10.1126/science.271.5247.350. [DOI] [PubMed] [Google Scholar]
  10. Hogan B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996 Jul 1;10(13):1580–1594. doi: 10.1101/gad.10.13.1580. [DOI] [PubMed] [Google Scholar]
  11. Hoodless P. A., Haerry T., Abdollah S., Stapleton M., O'Connor M. B., Attisano L., Wrana J. L. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell. 1996 May 17;85(4):489–500. doi: 10.1016/s0092-8674(00)81250-7. [DOI] [PubMed] [Google Scholar]
  12. Kawabata M., Imamura T., Miyazono K., Engel M. E., Moses H. L. Interaction of the transforming growth factor-beta type I receptor with farnesyl-protein transferase-alpha. J Biol Chem. 1995 Dec 15;270(50):29628–29631. doi: 10.1074/jbc.270.50.29628. [DOI] [PubMed] [Google Scholar]
  13. Keeton M. R., Curriden S. A., van Zonneveld A. J., Loskutoff D. J. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem. 1991 Dec 5;266(34):23048–23052. [PubMed] [Google Scholar]
  14. Kingsley D. M. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994 Jan;8(2):133–146. doi: 10.1101/gad.8.2.133. [DOI] [PubMed] [Google Scholar]
  15. Lagna G., Hata A., Hemmati-Brivanlou A., Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 1996 Oct 31;383(6603):832–836. doi: 10.1038/383832a0. [DOI] [PubMed] [Google Scholar]
  16. Liu F., Hata A., Baker J. C., Doody J., Cárcamo J., Harland R. M., Massagué J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature. 1996 Jun 13;381(6583):620–623. doi: 10.1038/381620a0. [DOI] [PubMed] [Google Scholar]
  17. Massagué J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell. 1996 Jun 28;85(7):947–950. doi: 10.1016/s0092-8674(00)81296-9. [DOI] [PubMed] [Google Scholar]
  18. Sekelsky J. J., Newfeld S. J., Raftery L. A., Chartoff E. H., Gelbart W. M. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1347–1358. doi: 10.1093/genetics/139.3.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ventura F., Liu F., Doody J., Massagué J. Interaction of transforming growth factor-beta receptor I with farnesyl-protein transferase-alpha in yeast and mammalian cells. J Biol Chem. 1996 Jun 14;271(24):13931–13934. doi: 10.1074/jbc.271.24.13931. [DOI] [PubMed] [Google Scholar]
  20. Wang T., Donahoe P. K., Zervos A. S. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science. 1994 Jul 29;265(5172):674–676. doi: 10.1126/science.7518616. [DOI] [PubMed] [Google Scholar]
  21. Wrana J. L., Attisano L., Wieser R., Ventura F., Massagué J. Mechanism of activation of the TGF-beta receptor. Nature. 1994 Aug 4;370(6488):341–347. doi: 10.1038/370341a0. [DOI] [PubMed] [Google Scholar]
  22. Zervos A. S., Gyuris J., Brent R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell. 1993 Jan 29;72(2):223–232. doi: 10.1016/0092-8674(93)90662-a. [DOI] [PubMed] [Google Scholar]
  23. Zhang Y., Feng X., We R., Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996 Sep 12;383(6596):168–172. doi: 10.1038/383168a0. [DOI] [PubMed] [Google Scholar]