Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections (original) (raw)

Abstract

We have examined the biochemical and histological effects of high concentrations of dopamine (0.05-1.0 micromol) injected into the rat striatum. Twenty-four hours after such injections, the oxidation products of dopamine and dihydroxyphenylacetic acid were detected as both free and protein-bound cysteinyl dopamine and cysteinyl dihydroxyphenylacetic acid. Protein-bound cysteinyl catechols were increased 7- to 20-fold above control tissue levels. By 7 days postinjection, the protein-bound cysteinyl catechols were still detectable, although reduced in concentration, whereas the free forms could no longer be measured. Histological examination of striatum at 7 days revealed a central core of nonspecific damage including neuronal loss and gliosis. This core was surrounded by a region containing a marked reduction in tyrosine hydroxylase immunoreactivity but no apparent loss of serotonin or synaptophysin immunoreactivity. When dopamine was injected with an equimolar concentration of either ascorbic acid or glutathione, the formation of protein-bound cysteinyl catechols was greatly reduced. Moreover, the specific loss of tyrosine hydroxylase immunoreactivity associated with dopamine injections was no longer detectable, although the nonspecific changes in cytoarchitecture were still apparent. Thus, following its oxidation, dopamine in high concentrations binds to protein in the striatum, an event that is correlated with the specific loss of dopaminergic terminals. We suggest that the selective degeneration of dopamine neurons in Parkinson's disease may be caused by an imbalance between the oxidation of dopamine and the availability of antioxidant defenses.

1956

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie E. D., Bonatz A. E., Zigmond M. J. Effects of L-dopa on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res. 1990 Aug 13;525(1):36–44. doi: 10.1016/0006-8993(90)91318-b. [DOI] [PubMed] [Google Scholar]
  2. Bonnassie S., Oreglia J., Sicard A. M. Nucleotide sequence of the dapA gene from Corynebacterium glutamicum. Nucleic Acids Res. 1990 Nov 11;18(21):6421–6421. doi: 10.1093/nar/18.21.6421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brochetto-Braga M. R., Leite A., Arruda P. Partial purification and characterization of lysine-ketoglutarate reductase in normal and opaque-2 maize endosperms. Plant Physiol. 1992 Mar;98(3):1139–1147. doi: 10.1104/pp.98.3.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown A. P., Coleman J., Tommey A. M., Watson M. D., Slabas A. R. Isolation and characterisation of a maize cDNA that complements a 1-acyl sn-glycerol-3-phosphate acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Mol Biol. 1994 Oct;26(1):211–223. doi: 10.1007/BF00039533. [DOI] [PubMed] [Google Scholar]
  5. Buisson A., Callebert J., Mathieu E., Plotkine M., Boulu R. G. Striatal protection induced by lesioning the substantia nigra of rats subjected to focal ischemia. J Neurochem. 1992 Sep;59(3):1153–1157. doi: 10.1111/j.1471-4159.1992.tb08358.x. [DOI] [PubMed] [Google Scholar]
  6. Chapman A. G., Dürmuller N., Lees G. J., Meldrum B. S. Excitotoxicity of NMDA and kainic acid is modulated by nigrostriatal dopaminergic fibres. Neurosci Lett. 1989 Dec 15;107(1-3):256–260. doi: 10.1016/0304-3940(89)90827-6. [DOI] [PubMed] [Google Scholar]
  7. Delauney A. J., Verma D. P. A soybean gene encoding delta 1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol Gen Genet. 1990 May;221(3):299–305. doi: 10.1007/BF00259392. [DOI] [PubMed] [Google Scholar]
  8. Dereppe C., Bold G., Ghisalba O., Ebert E., Schär H. P. Purification and characterization of dihydrodipicolinate synthase from pea. Plant Physiol. 1992 Mar;98(3):813–821. doi: 10.1104/pp.98.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dexter D. T., Carter C. J., Wells F. R., Javoy-Agid F., Agid Y., Lees A., Jenner P., Marsden C. D. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem. 1989 Feb;52(2):381–389. doi: 10.1111/j.1471-4159.1989.tb09133.x. [DOI] [PubMed] [Google Scholar]
  10. Falco S. C., Guida T., Locke M., Mauvais J., Sanders C., Ward R. T., Webber P. Transgenic canola and soybean seeds with increased lysine. Biotechnology (N Y) 1995 Jun;13(6):577–582. doi: 10.1038/nbt0695-577. [DOI] [PubMed] [Google Scholar]
  11. Fornstedt B., Bergh I., Rosengren E., Carlsson A. An improved HPLC-electrochemical detection method for measuring brain levels of 5-S-cysteinyldopamine, 5-S-cysteinyl-3,4-dihydroxyphenylalanine, and 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid. J Neurochem. 1990 Feb;54(2):578–586. doi: 10.1111/j.1471-4159.1990.tb01910.x. [DOI] [PubMed] [Google Scholar]
  12. Fornstedt B., Brun A., Rosengren E., Carlsson A. The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm Park Dis Dement Sect. 1989;1(4):279–295. doi: 10.1007/BF02263482. [DOI] [PubMed] [Google Scholar]
  13. Fornstedt B., Carlsson A. A marked rise in 5-S-cysteinyl-dopamine levels in guinea-pig striatum following reserpine treatment. J Neural Transm. 1989;76(2):155–161. doi: 10.1007/BF01578755. [DOI] [PubMed] [Google Scholar]
  14. Fornstedt B., Pileblad E., Carlsson A. In vivo autoxidation of dopamine in guinea pig striatum increases with age. J Neurochem. 1990 Aug;55(2):655–659. doi: 10.1111/j.1471-4159.1990.tb04183.x. [DOI] [PubMed] [Google Scholar]
  15. Frisch D. A., Gengenbach B. G., Tommey A. M., Sellner J. M., Somers D. A., Myers D. E. Isolation and characterization of dihydrodipicolinate synthase from maize. Plant Physiol. 1991 Jun;96(2):444–452. doi: 10.1104/pp.96.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frisch D. A., Tommey A. M., Gengenbach B. G., Somers D. A. Direct genetic selection of a maize cDNA for dihydrodipicolinate synthase in an Escherichia coli dapA- auxotroph. Mol Gen Genet. 1991 Aug;228(1-2):287–293. doi: 10.1007/BF00282478. [DOI] [PubMed] [Google Scholar]
  17. Gantt J. S., Larson R. J., Farnham M. W., Pathirana S. M., Miller S. S., Vance C. P. Aspartate aminotransferase in effective and ineffective alfalfa nodules : cloning of a cDNA and determination of enzyme activity, protein, and mRNA levels. Plant Physiol. 1992 Mar;98(3):868–878. doi: 10.1104/pp.98.3.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Graham D. G. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978 Jul;14(4):633–643. [PubMed] [Google Scholar]
  19. Graham D. G., Tiffany S. M., Bell W. R., Jr, Gutknecht W. F. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol. 1978 Jul;14(4):644–653. [PubMed] [Google Scholar]
  20. Hastings T. G., Zigmond M. J. Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione. J Neurochem. 1994 Sep;63(3):1126–1132. doi: 10.1046/j.1471-4159.1994.63031126.x. [DOI] [PubMed] [Google Scholar]
  21. Hirsch E., Graybiel A. M., Agid Y. A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature. 1988 Jul 28;334(6180):345–348. doi: 10.1038/334345a0. [DOI] [PubMed] [Google Scholar]
  22. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  23. Kaneko T., Hashimoto T., Kumpaisal R., Yamada Y. Molecular cloning of wheat dihydrodipicolinate synthase. J Biol Chem. 1990 Oct 15;265(29):17451–17455. [PubMed] [Google Scholar]
  24. Karchi H., Shaul O., Galili G. Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2577–2581. doi: 10.1073/pnas.91.7.2577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kish S. J., Morito C., Hornykiewicz O. Glutathione peroxidase activity in Parkinson's disease brain. Neurosci Lett. 1985 Aug 5;58(3):343–346. doi: 10.1016/0304-3940(85)90078-3. [DOI] [PubMed] [Google Scholar]
  26. Kumpaisal R., Hashimoto T., Yamada Y. Purification and characterization of dihydrodipicolinate synthase from wheat suspension cultures. Plant Physiol. 1987 Sep;85(1):145–151. doi: 10.1104/pp.85.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Laber B., Gomis-Rüth F. X., Romão M. J., Huber R. Escherichia coli dihydrodipicolinate synthase. Identification of the active site and crystallization. Biochem J. 1992 Dec 1;288(Pt 2):691–695. doi: 10.1042/bj2880691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lewis D. A., Campbell M. J., Morrison J. H. An immunohistochemical characterization of somatostatin-28 and somatostatin-281-12 in monkey prefrontal cortex. J Comp Neurol. 1986 Jun 1;248(1):1–18. doi: 10.1002/cne.902480102. [DOI] [PubMed] [Google Scholar]
  29. Lewis D. A., Melchitzky D. S., Haycock J. W. Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Res. 1994 Sep 5;656(1):1–13. doi: 10.1016/0006-8993(94)91360-9. [DOI] [PubMed] [Google Scholar]
  30. McLean J. H., Shipley M. T. Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat. J Neurosci. 1987 Oct;7(10):3016–3028. doi: 10.1523/JNEUROSCI.07-10-03016.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mirwaldt C., Korndörfer I., Huber R. The crystal structure of dihydrodipicolinate synthase from Escherichia coli at 2.5 A resolution. J Mol Biol. 1995 Feb 10;246(1):227–239. doi: 10.1006/jmbi.1994.0078. [DOI] [PubMed] [Google Scholar]
  32. O'Dell S. J., Weihmuller F. B., Marshall J. F. Multiple methamphetamine injections induce marked increases in extracellular striatal dopamine which correlate with subsequent neurotoxicity. Brain Res. 1991 Nov 15;564(2):256–260. doi: 10.1016/0006-8993(91)91461-9. [DOI] [PubMed] [Google Scholar]
  33. Perl A., Shaul O., Galili G. Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts. Plant Mol Biol. 1992 Aug;19(5):815–823. doi: 10.1007/BF00027077. [DOI] [PubMed] [Google Scholar]
  34. Perry T. L., Godin D. V., Hansen S. Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci Lett. 1982 Dec 13;33(3):305–310. doi: 10.1016/0304-3940(82)90390-1. [DOI] [PubMed] [Google Scholar]
  35. Pisabarro A., Malumbres M., Mateos L. M., Oguiza J. A., Martín J. F. A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate synthase, dihydrodipicolinate reductase, and a third polypeptide of unknown function. J Bacteriol. 1993 May;175(9):2743–2749. doi: 10.1128/jb.175.9.2743-2749.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Richaud F., Richaud C., Ratet P., Patte J. C. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene. J Bacteriol. 1986 Apr;166(1):297–300. doi: 10.1128/jb.166.1.297-300.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rosenberg P. A. Catecholamine toxicity in cerebral cortex in dissociated cell culture. J Neurosci. 1988 Aug;8(8):2887–2894. doi: 10.1523/JNEUROSCI.08-08-02887.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rosengren E., Linder-Eliasson E., Carlsson A. Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm. 1985;63(3-4):247–253. doi: 10.1007/BF01252029. [DOI] [PubMed] [Google Scholar]
  39. Saito K., Miura N., Yamazaki M., Hirano H., Murakoshi I. Molecular cloning and bacterial expression of cDNA encoding a plant cysteine synthase. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8078–8082. doi: 10.1073/pnas.89.17.8078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schenk J. O., Miller E., Gaddis R., Adams R. N. Homeostatic control of ascorbate concentration in CNS extracellular fluid. Brain Res. 1982 Dec 16;253(1-2):353–356. doi: 10.1016/0006-8993(82)90709-0. [DOI] [PubMed] [Google Scholar]
  41. Schmidt C. J., Ritter J. K., Sonsalla P. K., Hanson G. R., Gibb J. W. Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther. 1985 Jun;233(3):539–544. [PubMed] [Google Scholar]
  42. Shaul O., Galili G. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol Biol. 1993 Nov;23(4):759–768. doi: 10.1007/BF00021531. [DOI] [PubMed] [Google Scholar]
  43. Silk G. W., Matthews B. F., Somers D. A., Gengenbach B. G. Cloning and expression of the soybean DapA gene encoding dihydrodipicolinate synthase. Plant Mol Biol. 1994 Nov;26(3):989–993. doi: 10.1007/BF00028865. [DOI] [PubMed] [Google Scholar]
  44. Snustad D. P., Hunsperger J. P., Chereskin B. M., Messing J. Maize glutamine synthetase cDNAs: isolation by direct genetic selection in Escherichia coli. Genetics. 1988 Dec;120(4):1111–1123. doi: 10.1093/genetics/120.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sofic E., Paulus W., Jellinger K., Riederer P., Youdim M. B. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem. 1991 Mar;56(3):978–982. doi: 10.1111/j.1471-4159.1991.tb02017.x. [DOI] [PubMed] [Google Scholar]
  46. Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]
  47. Van Camp W., Bowler C., Villarroel R., Tsang E. W., Van Montagu M., Inzé D. Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9903–9907. doi: 10.1073/pnas.87.24.9903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weinberger J., Nieves-Rosa J., Cohen G. Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-para-tyrosine. Stroke. 1985 Sep-Oct;16(5):864–870. doi: 10.1161/01.str.16.5.864. [DOI] [PubMed] [Google Scholar]
  49. YUGARI Y., GILVARG C. Coordinate end-product inhibition in lysine synthesis in Escherichia coli. Biochim Biophys Acta. 1962 Aug 27;62:612–614. doi: 10.1016/0006-3002(62)90256-1. [DOI] [PubMed] [Google Scholar]
  50. Zigmond M. J., Hastings T. G., Abercrombie E. D. Neurochemical responses to 6-hydroxydopamine and L-dopa therapy: implications for Parkinson's disease. Ann N Y Acad Sci. 1992 May 11;648:71–86. doi: 10.1111/j.1749-6632.1992.tb24525.x. [DOI] [PubMed] [Google Scholar]