Evidence for the regulatory function of synaptoplasmic acetyl-CoA in acetylcholine synthesis in nerve endings (original) (raw)

Abstract

Isolated synaptosomes maintained a relatively stable level of acetyl-CoA during their incubation in the presence of 30 mM-KCl. Addition of Ca2+ resulted in inhibition of pyruvate oxidation and slight activation of acetylcholine synthesis. The cation decreased acetyl-CoA in intrasynaptosomal mitochondria, but did not alter its content in synaptoplasm. Verapamil did not affect pyruvate oxidation, but decreased acetyl-CoA in synaptoplasm and inhibited acetylcholine synthesis in synaptosomes. It indicates that Ca2+ might regulate acetylcholine synthesis through changes in the direct transfer of acetyl-CoA from mitochondria to synaptoplasm.

377

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Browning E. T., Schulman M. P. (14C) acetylcholine synthesis by cortex slices of rat brain. J Neurochem. 1968 Dec;15(12):1391–1405. doi: 10.1111/j.1471-4159.1968.tb05921.x. [DOI] [PubMed] [Google Scholar]
  3. Carvalho C. A., Coutinho O. P., Carvalho A. P. Effects of Ca2+ channel blockers on Ca2+ translocation across synaptosomal membranes. J Neurochem. 1986 Dec;47(6):1774–1784. doi: 10.1111/j.1471-4159.1986.tb13088.x. [DOI] [PubMed] [Google Scholar]
  4. Dolezal V., Tucek S. Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices. J Neurochem. 1981 Apr;36(4):1323–1330. doi: 10.1111/j.1471-4159.1981.tb00569.x. [DOI] [PubMed] [Google Scholar]
  5. Foldes M., Barritt G. J. Regulation by calcium ions of pyruvate carboxylation, pyruvate transport, and adenine nucleotide transport in isolated rat liver mitochondria. J Biol Chem. 1977 Aug 10;252(15):5372–5380. [PubMed] [Google Scholar]
  6. Gibson G. E., Jope R., Blass J. P. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem J. 1975 Apr;148(1):17–23. doi: 10.1042/bj1480017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson G. E., Peterson C. Acetylcholine and oxidative metabolism in septum and hippocampus in vitro. J Biol Chem. 1983 Jan 25;258(2):1142–1145. [PubMed] [Google Scholar]
  8. Haga T., Noda H. Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta. 1973 Jan 26;291(2):564–575. doi: 10.1016/0005-2736(73)90508-7. [DOI] [PubMed] [Google Scholar]
  9. Harvey S. A., Booth R. F., Clark J. B. The effect of [Ca2+] and [H+] on the functional recovery of rat brain synaptosomes from anoxic insult in vitro. Biochem J. 1983 May 15;212(2):289–295. doi: 10.1042/bj2120289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lai J. C., DiLorenzo J. C., Sheu K. F. Pyruvate dehydrogenase complex is inhibited in calcium-loaded cerebrocortical mitochondria. Neurochem Res. 1988 Nov;13(11):1043–1048. doi: 10.1007/BF00973148. [DOI] [PubMed] [Google Scholar]
  11. Lefresne P., Guyenet P., Glowinski J. Acetylcholine synthesis from (2- 14 C)pyruvate in rat striatal slices. J Neurochem. 1973 Apr;20(4):1083–1097. doi: 10.1111/j.1471-4159.1973.tb00079.x. [DOI] [PubMed] [Google Scholar]
  12. Mann S. P., Hebb C. Free choline in the brain of the rat. J Neurochem. 1977 Jan;28(1):241–241. doi: 10.1111/j.1471-4159.1977.tb07735.x. [DOI] [PubMed] [Google Scholar]
  13. Molenaar P. C., Nickolson V. J., Polak R. L. Preferential release of newly synthesized 3 H-acetylcholine from rat cerebral cortex slices in vitro. Br J Pharmacol. 1973 Jan;47(1):97–108. doi: 10.1111/j.1476-5381.1973.tb08162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rícný J., Tucek S. Acetyl coenzyme A and acetylcholine in slices of rat caudate nuclei incubated in the presence of metabolic inhibitors. J Biol Chem. 1981 May 25;256(10):4919–4923. [PubMed] [Google Scholar]
  15. Szutowicz A., Bielarczyk H. Elimination of CoASH interference from acetyl-CoA cycling assay by maleic anhydride. Anal Biochem. 1987 Aug 1;164(2):292–296. doi: 10.1016/0003-2697(87)90495-7. [DOI] [PubMed] [Google Scholar]
  16. Szutowicz A., Bielarczyk H., Lysiak W. The role of citrate derived from glucose in the acetylcholine synthesis in rat brain synaptosomes. Int J Biochem. 1981;13(8):887–892. doi: 10.1016/0020-711x(81)90014-8. [DOI] [PubMed] [Google Scholar]
  17. Szutowicz A., Lysiak W., Angielski S. The effect of (-)hydroxycitrate on pyruvate metabolism in rat brain synaptosomes. J Neurochem. 1977 Aug;29(2):375–378. doi: 10.1111/j.1471-4159.1977.tb09635.x. [DOI] [PubMed] [Google Scholar]
  18. Tucek S. Problems in the organization and control of acetylcholine synthesis in brain neurons. Prog Biophys Mol Biol. 1984;44(1):1–46. doi: 10.1016/0079-6107(84)90011-7. [DOI] [PubMed] [Google Scholar]
  19. Vághy P. L., Johnson J. D., Matlib M. A., Wang T., Schwartz A. Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. J Biol Chem. 1982 Jun 10;257(11):6000–6002. [PubMed] [Google Scholar]
  20. White H. L., Wu J. C. Kinetics of choline acetyltransferases (EC 2.3.1.6) from human and other mammalian central and peripheral nervous tissues. J Neurochem. 1973 Feb;20(2):297–307. doi: 10.1111/j.1471-4159.1973.tb12129.x. [DOI] [PubMed] [Google Scholar]