Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis (original) (raw)

Abstract

Earlier results from sectioned nuclei indicating that Schizosaccharomyces pombe does not develop a classical tripartite synaptonemal complex (SC) during meiotic prophase are confirmed by spreading of whole nuclei. The linear elements appearing during prophase I resemble the axial cores (SC precursors) of other organisms. The number of linear elements in haploid, diploid, and tetraploid strains is always higher than the chromosome number, implying that they are not formed continuously along the chromosomes. Time course experiments reveal that the elements appear after DNA replication and form networks and bundles. Later they separate and approximately 24 individual elements with a total length of 34 microns are observed before degradation and meiotic divisions. Parallel staining of DNA reveals changes in nuclear shape during meiotic prophase. Strains with a mei4 mutation are blocked at a late prophase stage. In serial sections we additionally observed a constant arrangement of the spindle pole body, the nucleolus, and the presumptive centromere cluster. Thus, S. pombe manages to recombine and segregate its chromosomes without SC. This might correlate with the absence of crossover interference. We propose a mechanism for chromosome pairing with initial recognition of the homologs at the centromeres and suggest functions of the linear elements in preparation of the chromosomes for meiosis I disjunction. With the spreading technique combined genetic, molecular, and cytological approaches become feasible in S. pombe. This provides an opportunity to study essential meiotic functions in the absence of SCs which may help to clarify the significance of the SC and its components for meiotic chromosome structure and function.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  2. Beach D., Rodgers L., Gould J. ran1+ controls the transition from mitotic division to meiosis in fission yeast. Curr Genet. 1985;10(4):297–311. doi: 10.1007/BF00365626. [DOI] [PubMed] [Google Scholar]
  3. Bojko M. Presence of abnormal synaptonemal complexes in heterothallic species of Neurospora. Genome. 1988 Oct;30(5):697–709. doi: 10.1139/g88-117. [DOI] [PubMed] [Google Scholar]
  4. Bresch C., Müller G., Egel R. Genes involved in meiosis and sporulation of a yeast. Mol Gen Genet. 1968;102(4):301–306. doi: 10.1007/BF00433721. [DOI] [PubMed] [Google Scholar]
  5. Bähler J., Schuchert P., Grimm C., Kohli J. Synchronized meiosis and recombination in fission yeast: observations with pat1-114 diploid cells. Curr Genet. 1991 Jun;19(6):445–451. doi: 10.1007/BF00312735. [DOI] [PubMed] [Google Scholar]
  6. Clutterbuck A. J. Sexual and parasexual genetics of Aspergillus species. Biotechnology. 1992;23:3–18. [PubMed] [Google Scholar]
  7. De Veaux L. C., Hoagland N. A., Smith G. R. Seventeen complementation groups of mutations decreasing meiotic recombination in Schizosaccharomyces pombe. Genetics. 1992 Feb;130(2):251–262. doi: 10.1093/genetics/130.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dresser M. E., Giroux C. N. Meiotic chromosome behavior in spread preparations of yeast. J Cell Biol. 1988 Mar;106(3):567–573. doi: 10.1083/jcb.106.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Egel-Mitani M., Olson L. W., Egel R. Meiosis in Aspergillus nidulans: another example for lacking synaptonemal complexes in the absence of crossover interference. Hereditas. 1982;97(2):179–187. doi: 10.1111/j.1601-5223.1982.tb00761.x. [DOI] [PubMed] [Google Scholar]
  10. Egel R., Egel-Mitani M. Premeiotic DNA synthesis in fission yeast. Exp Cell Res. 1974 Sep;88(1):127–134. doi: 10.1016/0014-4827(74)90626-0. [DOI] [PubMed] [Google Scholar]
  11. Egel R. Synaptonemal complex and crossing-over: structural support or interference? Heredity (Edinb) 1978 Oct;41(2):233–237. doi: 10.1038/hdy.1978.92. [DOI] [PubMed] [Google Scholar]
  12. Engebrecht J., Hirsch J., Roeder G. S. Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell. 1990 Sep 7;62(5):927–937. doi: 10.1016/0092-8674(90)90267-i. [DOI] [PubMed] [Google Scholar]
  13. Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  14. Heyting C., Dietrich A. J., Moens P. B., Dettmers R. J., Offenberg H. H., Redeker E. J., Vink A. C. Synaptonemal complex proteins. Genome. 1989;31(1):81–87. doi: 10.1139/g89-016. [DOI] [PubMed] [Google Scholar]
  15. Hiraoka Y., Agard D. A., Sedat J. W. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J Cell Biol. 1990 Dec;111(6 Pt 2):2815–2828. doi: 10.1083/jcb.111.6.2815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iino Y., Yamamoto M. Negative control for the initiation of meiosis in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2447–2451. doi: 10.1073/pnas.82.8.2447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. King J. S., Mortimer R. K. A polymerization model of chiasma interference and corresponding computer simulation. Genetics. 1990 Dec;126(4):1127–1138. doi: 10.1093/genetics/126.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kleckner N., Padmore R., Bishop D. K. Meiotic chromosome metabolism: one view. Cold Spring Harb Symp Quant Biol. 1991;56:729–743. doi: 10.1101/sqb.1991.056.01.082. [DOI] [PubMed] [Google Scholar]
  19. Klein F., Laroche T., Cardenas M. E., Hofmann J. F., Schweizer D., Gasser S. M. Localization of RAP1 and topoisomerase II in nuclei and meiotic chromosomes of yeast. J Cell Biol. 1992 Jun;117(5):935–948. doi: 10.1083/jcb.117.5.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kohli J., Hottinger H., Munz P., Strauss A., Thuriaux P. Genetic Mapping in SCHIZOSACCHAROMYCES POMBE by Mitotic and Meiotic Analysis and Induced Haploidization. Genetics. 1977 Nov;87(3):471–489. doi: 10.1093/genetics/87.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leblon G., Zickler D., Lebilcot S. Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions. Genetics. 1986 Feb;112(2):183–204. doi: 10.1093/genetics/112.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Loidl J. Coming to grips with a complex matter. A multidisciplinary approach to the synaptonemal complex. Chromosoma. 1991 Jun;100(5):289–292. doi: 10.1007/BF00360526. [DOI] [PubMed] [Google Scholar]
  23. Loidl J., Nairz K., Klein F. Meiotic chromosome synapsis in a haploid yeast. Chromosoma. 1991 May;100(4):221–228. doi: 10.1007/BF00344155. [DOI] [PubMed] [Google Scholar]
  24. Loidl J. The initiation of meiotic chromosome pairing: the cytological view. Genome. 1990 Dec;33(6):759–778. doi: 10.1139/g90-115. [DOI] [PubMed] [Google Scholar]
  25. Maguire M. P. A possible role for the synaptonemal complex in chiasma maintenance. Exp Cell Res. 1978 Mar 15;112(2):297–308. doi: 10.1016/0014-4827(78)90213-6. [DOI] [PubMed] [Google Scholar]
  26. Maguire M. P. Sister chromatid cohesiveness: vital function, obscure mechanism. Biochem Cell Biol. 1990 Nov;68(11):1231–1242. doi: 10.1139/o90-183. [DOI] [PubMed] [Google Scholar]
  27. Maguire M. P. The evolution of meiosis. J Theor Biol. 1992 Jan 7;154(1):43–55. doi: 10.1016/s0022-5193(05)80187-0. [DOI] [PubMed] [Google Scholar]
  28. Maller J. L. Regulation of amphibian oocyte maturation. Cell Differ. 1985 Jun;16(4):211–221. doi: 10.1016/0045-6039(85)90570-6. [DOI] [PubMed] [Google Scholar]
  29. Padmore R., Cao L., Kleckner N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell. 1991 Sep 20;66(6):1239–1256. doi: 10.1016/0092-8674(91)90046-2. [DOI] [PubMed] [Google Scholar]
  30. Ponticelli A. S., Smith G. R. Meiotic recombination-deficient mutants of Schizosaccharomyces pombe. Genetics. 1989 Sep;123(1):45–54. doi: 10.1093/genetics/123.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rattner J. B., Goldsmith M. R., Hamkalo B. A. Chromosome organization during male meiosis in Bombyx mori. Chromosoma. 1981;82(3):341–351. doi: 10.1007/BF00285760. [DOI] [PubMed] [Google Scholar]
  33. Rattner J. B., Goldsmith M., Hamkalo B. A. Chromatin organization during meiotic prophase of Bombyx mori. Chromosoma. 1980;79(2):215–224. doi: 10.1007/BF01175187. [DOI] [PubMed] [Google Scholar]
  34. Roeder G. S. Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation. Trends Genet. 1990 Dec;6(12):385–389. doi: 10.1016/0168-9525(90)90297-j. [DOI] [PubMed] [Google Scholar]
  35. Rowley J. C., 3rd, Moran D. T. A simple procedure for mounting wrinkle-free sections on formvar-coated slot grids. Ultramicroscopy. 1975 Dec;1(2):151–155. doi: 10.1016/s0304-3991(75)80018-0. [DOI] [PubMed] [Google Scholar]
  36. STRICKLAND W. N. An analysis of interference in Aspergillus nidulans. Proc R Soc Lond B Biol Sci. 1958 Jul 1;149(934):82–101. doi: 10.1098/rspb.1958.0053. [DOI] [PubMed] [Google Scholar]
  37. Scherthan H., Loidl J., Schuster T., Schweizer D. Meiotic chromosome condensation and pairing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma. 1992 Oct;101(10):590–595. doi: 10.1007/BF00360535. [DOI] [PubMed] [Google Scholar]
  38. Shimoda C., Hirata A., Kishida M., Hashida T., Tanaka K. Characterization of meiosis-deficient mutants by electron microscopy and mapping of four essential genes in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1985;200(2):252–257. doi: 10.1007/BF00425432. [DOI] [PubMed] [Google Scholar]
  39. Shuster E. O., Byers B. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):29–43. doi: 10.1093/genetics/123.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smithies O., Powers P. A. Gene conversions and their relation to homologous chromosome pairing. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):291–302. doi: 10.1098/rstb.1986.0008. [DOI] [PubMed] [Google Scholar]
  41. Snow R. Maximum likelihood estimation of linkage and interference from tetrad data. Genetics. 1979 May;92(1):231–245. doi: 10.1093/genetics/92.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Szankasi P., Smith G. R. A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J Biol Chem. 1992 Feb 15;267(5):3014–3023. [PubMed] [Google Scholar]
  43. Takahashi K., Murakami S., Chikashige Y., Funabiki H., Niwa O., Yanagida M. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell. 1992 Jul;3(7):819–835. doi: 10.1091/mbc.3.7.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tanaka K., Hirata A. Ascospore development in the fission yeasts Schizosaccharomyces pombe and S. japonicus. J Cell Sci. 1982 Aug;56:263–279. doi: 10.1242/jcs.56.1.263. [DOI] [PubMed] [Google Scholar]
  45. Toda T., Yamamoto M., Yanagida M. Sequential alterations in the nuclear chromatin region during mitosis of the fission yeast Schizosaccharomyces pombe: video fluorescence microscopy of synchronously growing wild-type and cold-sensitive cdc mutants by using a DNA-binding fluorescent probe. J Cell Sci. 1981 Dec;52:271–287. doi: 10.1242/jcs.52.1.271. [DOI] [PubMed] [Google Scholar]
  46. Uzawa S., Yanagida M. Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J Cell Sci. 1992 Feb;101(Pt 2):267–275. doi: 10.1242/jcs.101.2.267. [DOI] [PubMed] [Google Scholar]
  47. Watanabe Y., Lino Y., Furuhata K., Shimoda C., Yamamoto M. The S.pombe mei2 gene encoding a crucial molecule for commitment to meiosis is under the regulation of cAMP. EMBO J. 1988 Mar;7(3):761–767. doi: 10.1002/j.1460-2075.1988.tb02873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weith A. The fine structure of euchromatin and centromeric heterochromatin in Tenebrio molitor chromosomes. Chromosoma. 1985;91(3-4):287–296. doi: 10.1007/BF00328224. [DOI] [PubMed] [Google Scholar]
  49. von Wettstein D., Rasmussen S. W., Holm P. B. The synaptonemal complex in genetic segregation. Annu Rev Genet. 1984;18:331–413. doi: 10.1146/annurev.ge.18.120184.001555. [DOI] [PubMed] [Google Scholar]