Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants (original) (raw)

EMBO J. 1989 Mar; 8(3): 643–649.

Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria

Abstract

Doubly transformed tobacco plants were obtained following sequential transformation steps using two T-DNAs encoding different selection and screening markers: T-DNA-I encoded kanamycin resistance and nopaline synthase; T-DNA-II encoded hygromycin resistance and octopine synthase. A genetic analysis of the inheritance of the selection and screening marker genes in progeny of the doubly tranformed plants revealed that the expression of T-DNA-I genes was often suppressed. This suppression could be correlated with methylation in the promoters of these genes. Surprisingly, both the methylation and inactivation of T-DNA-I genes occurred only in plants containing both T-DNAs: when self-fertilization or backcrossing produced progeny containing only T-DNA-I, expression of the genes on this T-DNA was restored and the corresponding promoters were partially or completely demethylated. These results indicated that the presence of one T-DNA could affect the state of methylation and expression of genes on a second, unlinked T-DNA in the same genome.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.


Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group