Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. (original) (raw)

EMBO J. 1993 Nov; 12(11): 4095–4104.

VTT Biotechnical Laboratory, Espoo, Finland.

Abstract

The yeast SEC1 gene encodes a hydrophilic protein that functions at the terminal stage in secretion. We have cloned two yeast genes, SSO1 and SSO2, which in high copy number can suppress sec1 mutations and also mutations in several other late acting SEC genes, such as SEC3, SEC5, SEC9 and SEC15. SSO1 and SSO2 encode small proteins with N-terminal hydrophilic domains and C-terminal hydrophobic tails. The two proteins are 72% identical in sequence and together perform an essential function late in secretion. Sso1p and Sso2p show significant sequence similarity to six other proteins. Two of these, Sed5p and Pep12p, are yeast proteins that function in transport from ER to Golgi and from Golgi to the vacuole, respectively. Also related to Sso1p and Sso2p are three mammalian proteins: epimorphin, syntaxin A/HPC-1 and syntaxin B. A nematode cDNA product also belongs to the new protein family. The new protein family is thus present in a wide variety of eukaryotic cells, where its members function at different stages in vesicular transport.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.


Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group