Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes (original) (raw)

Abstract

Several techniques have recently been developed to detect single-base mismatches in DNA heteroduplexes that contain one strand of wild-type and one strand of mutated DNA. Here we tested the hypothesis that an appropriate system of mildly denaturing solvents can amplify the tendency of single-base mismatches to produce conformational changes, such as bends in the double helix, and thereby increase the differential migration of DNA heteroduplexes and homoduplexes during gel electrophoresis. The best separations of heteroduplexes and homoduplexes were obtained with a standard 6% polyacrylamide gel polymerized in 10% ethylene glycol/15% formamide/Tris-taurine buffer. As predicted by the hypothesis of solvent-induced bends, when the concentration of either ethylene glycol or formamide was increased, the differential migration decreased. Also, single-base mismatches within 50 bp of one end of a heteroduplex did not produce differential migration. Sixty of 68 single-base mismatches in a series of PCR products were detected in some 59 different sequence contexts. The eight mismatches not detected were either within 50 bp of the nearest end of the PCR product or in isolated high-melting-temperature domains. Therefore, it was possible to predict in advance the end regions and sequence contexts in which mismatches may be difficult to detect. The procedure can be applied to any PCR products of 200-800 bp and requires no special equipment or preparation of samples.

10325

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Koh D., Tinoco I., Jr, Martin F. H. Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A,C,G,T). Nucleic Acids Res. 1985 Jul 11;13(13):4811–4824. doi: 10.1093/nar/13.13.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhattacharyya A., Lilley D. M. Single base mismatches in DNA. Long- and short-range structure probed by analysis of axis trajectory and local chemical reactivity. J Mol Biol. 1989 Oct 20;209(4):583–597. doi: 10.1016/0022-2836(89)90596-2. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharyya A., Lilley D. M. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles). Nucleic Acids Res. 1989 Sep 12;17(17):6821–6840. doi: 10.1093/nar/17.17.6821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burlatsky S., Deutch J. Influence of solid friction on polymer relaxation in gel electrophoresis. Science. 1993 Jun 18;260(5115):1782–1784. doi: 10.1126/science.260.5115.1782. [DOI] [PubMed] [Google Scholar]
  5. Christiano A. M., Greenspan D. S., Hoffman G. G., Zhang X., Tamai Y., Lin A. N., Dietz H. C., Hovnanian A., Uitto J. A missense mutation in type VII collagen in two affected siblings with recessive dystrophic epidermolysis bullosa. Nat Genet. 1993 May;4(1):62–66. doi: 10.1038/ng0593-62. [DOI] [PubMed] [Google Scholar]
  6. Cotton R. G. Current methods of mutation detection. Mutat Res. 1993 Jan;285(1):125–144. doi: 10.1016/0027-5107(93)90060-s. [DOI] [PubMed] [Google Scholar]
  7. Cotton R. G., Rodrigues N. R., Campbell R. D. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4397–4401. doi: 10.1073/pnas.85.12.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ganguly A., Prockop D. J. Detection of single-base mutations by reaction of DNA heteroduplexes with a water-soluble carbodiimide followed by primer extension: application to products from the polymerase chain reaction. Nucleic Acids Res. 1990 Jul 11;18(13):3933–3939. doi: 10.1093/nar/18.13.3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ganguly A., Rooney J. E., Hosomi S., Zeiger A. R., Prockop D. J. Detection and location of single-base mutations in large DNA fragments by immunomicroscopy. Genomics. 1989 May;4(4):530–538. doi: 10.1016/0888-7543(89)90276-0. [DOI] [PubMed] [Google Scholar]
  11. Giannelli F., Green P. M., High K. A., Sommer S., Lillicrap D. P., Ludwig M., Olek K., Reitsma P. H., Goossens M., Yoshioka A. Haemophilia B: database of point mutations and short additions and deletions--third edition, 1992. Nucleic Acids Res. 1992 May 11;20 (Suppl):2027–2063. doi: 10.1093/nar/20.suppl.2027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Joshua-Tor L., Frolow F., Appella E., Hope H., Rabinovich D., Sussman J. L. Three-dimensional structures of bulge-containing DNA fragments. J Mol Biol. 1992 May 20;225(2):397–431. doi: 10.1016/0022-2836(92)90929-e. [DOI] [PubMed] [Google Scholar]
  13. Kalnik M. W., Norman D. G., Zagorski M. G., Swann P. F., Patel D. J. Conformational transitions in cytidine bulge-containing deoxytridecanucleotide duplexes: extra cytidine equilibrates between looped out (low temperature) and stacked (elevated temperature) conformations in solution. Biochemistry. 1989 Jan 10;28(1):294–303. doi: 10.1021/bi00427a040. [DOI] [PubMed] [Google Scholar]
  14. Keen J., Lester D., Inglehearn C., Curtis A., Bhattacharya S. Rapid detection of single base mismatches as heteroduplexes on Hydrolink gels. Trends Genet. 1991 Jan;7(1):5–5. doi: 10.1016/0168-9525(91)90004-a. [DOI] [PubMed] [Google Scholar]
  15. Kennard O., Hunter W. N. Oligonucleotide structure: a decade of results from single crystal X-ray diffraction studies. Q Rev Biophys. 1989 Aug;22(3):327–379. doi: 10.1017/s0033583500002997. [DOI] [PubMed] [Google Scholar]
  16. Kuivaniemi H., Tromp G., Prockop D. J. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J. 1991 Apr;5(7):2052–2060. doi: 10.1096/fasebj.5.7.2010058. [DOI] [PubMed] [Google Scholar]
  17. LEVINE L., GORDON J. A., JENCKS W. P. The relationship of structure to the effectiveness of denaturing agents for deoxyribonucleic acid. Biochemistry. 1963 Jan-Feb;2:168–175. doi: 10.1021/bi00901a030. [DOI] [PubMed] [Google Scholar]
  18. Lee C. H., Mizusawa H., Kakefuda T. Unwinding of double-stranded DNA helix by dehydration. Proc Natl Acad Sci U S A. 1981 May;78(5):2838–2842. doi: 10.1073/pnas.78.5.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lerman L. S., Frisch H. L. Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers. 1982 May;21(5):995–997. doi: 10.1002/bip.360210511. [DOI] [PubMed] [Google Scholar]
  20. Lerman L. S., Silverstein K. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 1987;155:482–501. doi: 10.1016/0076-6879(87)55032-7. [DOI] [PubMed] [Google Scholar]
  21. Lumpkin O. J., Déjardin P., Zimm B. H. Theory of gel electrophoresis of DNA. Biopolymers. 1985 Aug;24(8):1573–1593. doi: 10.1002/bip.360240812. [DOI] [PubMed] [Google Scholar]
  22. Novack D. F., Casna N. J., Fischer S. G., Ford J. P. Detection of single base-pair mismatches in DNA by chemical modification followed by electrophoresis in 15% polyacrylamide gel. Proc Natl Acad Sci U S A. 1986 Feb;83(3):586–590. doi: 10.1073/pnas.83.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Orosz J. M., Wetmur J. G. DNA melting temperatures and renaturation rates in concentrated alkylammonium salt solutions. Biopolymers. 1977 Jun;16(6):1183–1199. doi: 10.1002/bip.1977.360160603. [DOI] [PubMed] [Google Scholar]
  24. Perry D. J., Carrell R. W. Hydrolink gels: a rapid and simple approach to the detection of DNA mutations in thromboembolic disease. J Clin Pathol. 1992 Feb;45(2):158–160. doi: 10.1136/jcp.45.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rice J. A., Crothers D. M. DNA bending by the bulge defect. Biochemistry. 1989 May 16;28(10):4512–4516. doi: 10.1021/bi00436a058. [DOI] [PubMed] [Google Scholar]
  26. Shakked Z., Rabinovich D. The effect of the base sequence on the fine structure of the DNA double helix. Prog Biophys Mol Biol. 1986;47(3):159–195. doi: 10.1016/0079-6107(86)90013-1. [DOI] [PubMed] [Google Scholar]
  27. Sheffield V. C., Cox D. R., Lerman L. S., Myers R. M. Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A. 1989 Jan;86(1):232–236. doi: 10.1073/pnas.86.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shenk T. E., Rhodes C., Rigby P. W., Berg P. Biochemical method for mapping mutational alterations in DNA with S1 nuclease: the location of deletions and temperature-sensitive mutations in simian virus 40. Proc Natl Acad Sci U S A. 1975 Mar;72(3):989–993. doi: 10.1073/pnas.72.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spotila L. D., Constantinou C. D., Sereda L., Ganguly A., Riggs B. L., Prockop D. J. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5423–5427. doi: 10.1073/pnas.88.12.5423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tromp G., Christiano A., Goldstein N., Indik Z., Boyd C., Rosenbloom J., Deak S., Prockop D., Kuivaniemi H. A to G polymorphism in ELN gene. Nucleic Acids Res. 1991 Aug 11;19(15):4314–4314. doi: 10.1093/nar/19.15.4314-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang Y. H., Griffith J. Effects of bulge composition and flanking sequence on the kinking of DNA by bulged bases. Biochemistry. 1991 Feb 5;30(5):1358–1363. doi: 10.1021/bi00219a028. [DOI] [PubMed] [Google Scholar]
  32. White M. B., Carvalho M., Derse D., O'Brien S. J., Dean M. Detecting single base substitutions as heteroduplex polymorphisms. Genomics. 1992 Feb;12(2):301–306. doi: 10.1016/0888-7543(92)90377-5. [DOI] [PubMed] [Google Scholar]
  33. Williams C. J., Harrison D. A., Hopkinson I., Baldwin C. T., Ahmad N. N., Ala-Kokko L., Korn R. M., Buxton P. G., Dimascio J., Considine E. L. Detection of sequence variants in the gene for human type II procollagen (COL2A1) by direct sequencing of polymerase chain reaction-amplified genomic DNA. Hum Mutat. 1992;1(5):403–416. doi: 10.1002/humu.1380010510. [DOI] [PubMed] [Google Scholar]
  34. Woodson S. A., Crothers D. M. Structural model for an oligonucleotide containing a bulged guanosine by NMR and energy minimization. Biochemistry. 1988 May 3;27(9):3130–3141. doi: 10.1021/bi00409a004. [DOI] [PubMed] [Google Scholar]
  35. Zimm B. H., Levene S. D. Problems and prospects in the theory of gel electrophoresis of DNA. Q Rev Biophys. 1992 May;25(2):171–204. doi: 10.1017/s0033583500004662. [DOI] [PubMed] [Google Scholar]