Human T-cell lymphotropic virus (HTLV)-related endogenous sequence, HRES-1, encodes a 28-kDa protein: a possible autoantigen for HTLV-I gag-reactive autoantibodies (original) (raw)

Abstract

The presence of a human T-cell lymphotropic virus (HTLV)-related endogenous sequence, HRES-1, in the human genome has been documented. The HRES-1 genomic locus is transcriptionally active and contains open reading frames. Antibodies 232 and 233, specific for synthetic peptides pep14-24 and pep117-127, corresponding to two nonoverlapping HTLV-related regions in the longer open reading frame of HRES-1, recognize an identical 28-kDa protein in H9 human T cells. Thus, HRES-1 is a human endogenous retroviral sequence capable of protein expression. HRES-1/p28 is localized to the cytoplasm and nuclear bodies. While HTLV-I-specific antibodies react with HRES-1 peptides, antibody 233 cross-reacts with HTLV-I gag p24 protein. Three consecutive highly charged amino acid residues, Arg-Arg-Glu, present in both HRES-1 pep117-127 and HTLV-I gag p24 are likely to be the core of cross-reactive epitopes. The prevalence of antibodies to HRES-1 peptides pep14-24 and pep117-127 was determined in 65 normal blood donors and 146 patients with immunological disorders. Sera of patients with multiple sclerosis (19 out of 65, 29%), progressive systemic sclerosis (4 out of 17, 23%), systemic lupus erythematosus (4 out of 19, 21%), and Sjogren syndrome (2 out of 19, 10%) contained significantly higher HRES-1 peptide binding activity than sera of normal donors. Sera of patients with AIDS showed no specific binding to HRES-1 peptides. Nine of 30 HRES-1-seropositive patients showed immunoreactivity to HTLV-I gag p24. The data indicate that HRES-1/p28 may serve as an autoantigen eliciting autoantibodies cross-reactive with HTLV-I gag antigens.

1939

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham G. N., Khan A. S. Human endogenous retroviruses and immune disease. Clin Immunol Immunopathol. 1990 Jul;56(1):1–8. doi: 10.1016/0090-1229(90)90163-k. [DOI] [PubMed] [Google Scholar]
  2. Baltimore D. Retroviruses and retrotransposons: the role of reverse transcription in shaping the eukaryotic genome. Cell. 1985 Mar;40(3):481–482. doi: 10.1016/0092-8674(85)90190-4. [DOI] [PubMed] [Google Scholar]
  3. Bonner T. I., O'Connell C., Cohen M. Cloned endogenous retroviral sequences from human DNA. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4709–4713. doi: 10.1073/pnas.79.15.4709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Callahan R., Drohan W., Tronick S., Schlom J. Detection and cloning of human DNA sequences related to the mouse mammary tumor virus genome. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5503–5507. doi: 10.1073/pnas.79.18.5503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen I. S., Haislip A. M., Myers L. W., Ellison G. W., Merrill J. E. Failure to detect human T-cell leukemia virus-related sequences in multiple sclerosis blood. Arch Neurol. 1990 Oct;47(10):1064–1065. doi: 10.1001/archneur.1990.00530100026008. [DOI] [PubMed] [Google Scholar]
  6. Emerit I. Chromosomal instability in collagen disease. Z Rheumatol. 1980 Mar-Apr;39(3-4):84–90. [PubMed] [Google Scholar]
  7. Fujinami R. S., Oldstone M. B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985 Nov 29;230(4729):1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
  8. Fujinami R. S., Oldstone M. B., Wroblewska Z., Frankel M. E., Koprowski H. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2346–2350. doi: 10.1073/pnas.80.8.2346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffiths M. M., Eichwald E. J., Martin J. H., Smith C. B., DeWitt C. W. Immunogenetic control of experimental type II collagen-induced arthritis. I. Susceptibility and resistance among inbred strains of rats. Arthritis Rheum. 1981 Jun;24(6):781–789. doi: 10.1002/art.1780240605. [DOI] [PubMed] [Google Scholar]
  10. Groudine M., Eisenman R., Weintraub H. Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature. 1981 Jul 23;292(5821):311–317. doi: 10.1038/292311a0. [DOI] [PubMed] [Google Scholar]
  11. Harada F., Tsukada N., Kato N. Isolation of three kinds of human endogenous retrovirus-like sequences using tRNA(Pro) as a probe. Nucleic Acids Res. 1987 Nov 25;15(22):9153–9162. doi: 10.1093/nar/15.22.9153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kohsaka H., Yamamoto K., Fujii H., Miura H., Miyasaka N., Nishioka K., Miyamoto T. Fine epitope mapping of the human SS-B/La protein. Identification of a distinct autoepitope homologous to a viral gag polyprotein. J Clin Invest. 1990 May;85(5):1566–1574. doi: 10.1172/JCI114606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koprowski H., DeFreitas E. C., Harper M. E., Sandberg-Wollheim M., Sheremata W. A., Robert-Guroff M., Saxinger C. W., Feinberg M. B., Wong-Staal F., Gallo R. C. Multiple sclerosis and human T-cell lymphotropic retroviruses. Nature. 1985 Nov 14;318(6042):154–160. doi: 10.1038/318154a0. [DOI] [PubMed] [Google Scholar]
  14. Krieg A. M., Steinberg A. D. Retroviruses and autoimmunity. J Autoimmun. 1990 Apr;3(2):137–166. doi: 10.1016/0896-8411(90)90137-h. [DOI] [PubMed] [Google Scholar]
  15. Kröger B., Horak I. Isolation of novel human retrovirus-related sequences by hybridization to synthetic oligonucleotides complementary to the tRNA(Pro) primer-binding site. J Virol. 1987 Jul;61(7):2071–2075. doi: 10.1128/jvi.61.7.2071-2075.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maeda N. Nucleotide sequence of the haptoglobin and haptoglobin-related gene pair. The haptoglobin-related gene contains a retrovirus-like element. J Biol Chem. 1985 Jun 10;260(11):6698–6709. [PubMed] [Google Scholar]
  17. Mager D. L., Henthorn P. S. Identification of a retrovirus-like repetitive element in human DNA. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7510–7514. doi: 10.1073/pnas.81.23.7510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maul G. G., Jimenez S. A., Riggs E., Ziemnicka-Kotula D. Determination of an epitope of the diffuse systemic sclerosis marker antigen DNA topoisomerase I: sequence similarity with retroviral p30gag protein suggests a possible cause for autoimmunity in systemic sclerosis. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8492–8496. doi: 10.1073/pnas.86.21.8492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Noda M., Kurihara M., Takano T. Retrovirus-related sequences in human DNA: detection and cloning of sequences which hybridize with the long terminal repeat of baboon endogenous virus. Nucleic Acids Res. 1982 May 11;10(9):2865–2878. doi: 10.1093/nar/10.9.2865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ohta M., Ohta K., Mori F., Nishitani H., Saida T. Sera from patients with multiple sclerosis react with human cell T lymphotropic virus-I gag proteins but not env proteins--Western blotting analysis. J Immunol. 1986 Dec 1;137(11):3440–3443. [PubMed] [Google Scholar]
  21. PCR analysis of DNA from multiple sclerosis patients for the presence of HTLV-I. Science. 1989 Nov 10;246(4931):821–824. [PubMed] [Google Scholar]
  22. PCR analysis of DNA from multiple sclerosis patients for the presence of HTLV-I. Science. 1989 Nov 10;246(4931):821–824. [PubMed] [Google Scholar]
  23. Perl A., Isaacs C. M., Eddy R. L., Byers M. G., Sait S. N., Shows T. B. The human T-cell leukemia virus-related endogenous sequence (HRES1) is located on chromosome 1 at q42. Genomics. 1991 Dec;11(4):1172–1173. doi: 10.1016/0888-7543(91)90052-g. [DOI] [PubMed] [Google Scholar]
  24. Perl A., Nagy K., Pazmany T., Isaacs C., Baraczka K., Szabo T., Feher J. No evidence for human T-cell leukemia virus type I or human T-cell leukemia virus type II infection in patients with multiple sclerosis. Arch Neurol. 1990 Oct;47(10):1061–1063. doi: 10.1001/archneur.1990.00530100023007. [DOI] [PubMed] [Google Scholar]
  25. Perl A., Rosenblatt J. D., Chen I. S., DiVincenzo J. P., Bever R., Poiesz B. J., Abraham G. N. Detection and cloning of new HTLV-related endogenous sequences in man. Nucleic Acids Res. 1989 Sep 12;17(17):6841–6854. doi: 10.1093/nar/17.17.6841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Phillips P. E., Johnston S. L., Runge L. A., Moore J. L., Poiesz B. J. High IgM antibody to human T-lymphotropic virus type I in systemic lupus erythematosus. J Clin Immunol. 1986 May;6(3):234–241. doi: 10.1007/BF00918703. [DOI] [PubMed] [Google Scholar]
  27. Query C. C., Keene J. D. A human autoimmune protein associated with U1 RNA contains a region of homology that is cross-reactive with retroviral p30gag antigen. Cell. 1987 Oct 23;51(2):211–220. doi: 10.1016/0092-8674(87)90148-6. [DOI] [PubMed] [Google Scholar]
  28. Rabson A. B., Hamagishi Y., Steele P. E., Tykocinski M., Martin M. A. Characterization of human endogenous retroviral envelope RNA transcripts. J Virol. 1985 Oct;56(1):176–182. doi: 10.1128/jvi.56.1.176-182.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ranki A., Johansson E., Krohn K. Interpretation of antibodies reacting solely with human retroviral core proteins. N Engl J Med. 1988 Feb 18;318(7):448–449. doi: 10.1056/NEJM198802183180712. [DOI] [PubMed] [Google Scholar]
  30. Reuter R., Lührmann R. Immunization of mice with purified U1 small nuclear ribonucleoprotein (RNP) induces a pattern of antibody specificities characteristic of the anti-Sm and anti-RNP autoimmune response of patients with lupus erythematosus, as measured by monoclonal antibodies. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8689–8693. doi: 10.1073/pnas.83.22.8689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rittner G., Schwanitz G., Baur M. P., Black C. M., Welsh K. I., Kühnl P., Rittner C. Family studies in scleroderma (systemic sclerosis) demonstrating an HLA-linked increased chromosomal breakage rate in cultured lymphocytes. Hum Genet. 1988 Dec;81(1):64–70. doi: 10.1007/BF00283732. [DOI] [PubMed] [Google Scholar]
  32. Schmid M., Ott G., Haaf T., Scheres J. M. Evolutionary conservation of fragile sites induced by 5-azacytidine and 5-azadeoxycytidine in man, gorilla, and chimpanzee. Hum Genet. 1985;71(4):342–350. doi: 10.1007/BF00388461. [DOI] [PubMed] [Google Scholar]
  33. Seiki M., Hattori S., Hirayama Y., Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3618–3622. doi: 10.1073/pnas.80.12.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sutherland G. R., Parslow M. I., Baker E. New classes of common fragile sites induced by 5-azacytidine and bromodeoxyuridine. Hum Genet. 1985;69(3):233–237. doi: 10.1007/BF00293031. [DOI] [PubMed] [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]