Role of Heat Shock Proteins in Protection from and Pathogenesis of Infectious Diseases (original) (raw)

1. Adams E, Basten A, Rodda S, Britton W J. Human T-cell clones to the 70-kilodalton heat shock protein of Mycobacterium leprae define mycobacterium-specific epitopes rather than shared epitopes. Infect Immun. 1997;65:1061–1070. [PMC free article] [PubMed] [Google Scholar]

2. Allen P M. Peptide in positive and negative selection: a delicate balance. Cell. 1994;76:593–596. [PubMed] [Google Scholar]

3. Amberger A, Maczek C, Juergens G, Michaelis D, Schett G, Trieb K, Eberl T, Jindal S, Xu Q, Wick G. Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones. 1997;2:94–103. [PMC free article] [PubMed] [Google Scholar]

4. Amorim A G, Carrington M, Miles M A, Barker D C, de Almeida M L. Identification of the C-terminal region of 70 kDa heat shock protein from Leishmania (Viannia) braziliensis as a target for the humoral immune response. Cell Stress Chaperones. 1996;1:177–187. [PMC free article] [PubMed] [Google Scholar]

5. Anderson K S, Cresswell P. A role for calnexin (IP90) in the assembly of class II MHC molecules. EMBO J. 1994;13:675–682. [PMC free article] [PubMed] [Google Scholar]

6. Anderton S M, van Eden W. T-lymphocyte recognition of hsp60 in experimental arthritis. In: van Eden W, Young D B, editors. Stress proteins in medicine. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 73–93. [Google Scholar]

7. Anderton S M, van der Zee R, Goodacre J A. Inflammation activates self hsp60-specific T cells. Eur J Immunol. 1993;23:33–38. [PubMed] [Google Scholar]

8. Anderton S M, van der Zee R, Prakken B, Nordzij A, van Eden W. Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. J Exp Med. 1995;181:943–952. [PMC free article] [PubMed] [Google Scholar]

9. Anzola J, Luft B J, Gorgone G, Battwyler R J, Soderberg C, Laheshmaa R, Peltz G. Borrelia burgdorferi HSP70 homolog. Characterization of an immunoreactive stress protein. Infect Immun. 1992;60:3704–3713. [PMC free article] [PubMed] [Google Scholar]

10. Arnold D, Wahl C, Faath S, Rammensee H G. Influences of transporter associates with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J Exp Med. 1997;186:461–466. [PMC free article] [PubMed] [Google Scholar]

11. Arnold D, Faath S, Rammensee H-G, Schild H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med. 1995;182:885–889. [PMC free article] [PubMed] [Google Scholar]

12. Ashton-Rickardt P G, Bandeira A, Delaney J R, van Kaer L, Pircher H-P, Zinkernagel R M, Tonegawa S. Evidence for a differential avidity model of T cell selection in the thymus. Cell. 1994;76:651–663. [PubMed] [Google Scholar]

13. Atkinson M A, Kaufman D L, Campbell L, Gibbs K A, Shah S C, Bu D F, Erlander M G, Tobin A J, MacIaren N K. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet. 1992;339:458–459. [PubMed] [Google Scholar]

14. Bajramovic J J, Lassmann H, van Noort J M. Expression of alpha B-crystallin in glia cells during lesional development in multiple sclerosis. J Neuroimmunol. 1997;78:143–151. [PubMed] [Google Scholar]

15. Barker R N, Wells A D, Ghoraishian M, Easterfield A J, Hitsumoto Y, Elson C J, Thompson S J. Expression of mammalian 60-kD heat shock protein in the joints of mice with pristane-induced arthritis. Clin Exp Immunol. 1996;103:83–88. [PubMed] [Google Scholar]

16. Barker R N, Easterfield A J, Allen R F, Wells A D, Elson C J, Thompson S J. B- and T-cell autoantigens in pristane-induced arthritis. Immunology. 1996;89:189–194. [PMC free article] [PubMed] [Google Scholar]

17. Barrios C, Lussow A R, Van Embden J D A, Van der Zee R, Rappuoli R, Costantino P, Louis J A, Lambert P-H, Del Giudice G. Mycobacterial heat-shock proteins as carrier molecules. II. The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and bacillus Calmette Guerin priming. Eur J Immunol. 1992;22:1365–1372. [PubMed] [Google Scholar]

18. Barrios C, Georgopoulos C, Lambert P H, Del Giudice G. Heat shock proteins as carrier molecules: in vivo helper effect mediated by Escherichia coli GroEL and DnaK proteins required cross-linking with antigen. Clin Exp Immunol. 1994;98:229–233. [PMC free article] [PubMed] [Google Scholar]

19. Barrios C, Tougne C, Polla B S, Lambert P-H, del Giudice G. Specificity of antibodies induced after immunization of mice with the mycobacterial heat shock protein of 65 kD. Clin Exp Immunol. 1994;98:224–228. [PMC free article] [PubMed] [Google Scholar]

20. Beagley K W, Fujihashi K, Black C A, Lagoo A S, Yamamoto M, McGhee J R, Kiyono H. The Mycobacterium tuberculosis 71-kDa heat-shock protein induces proliferation and cytokine secretion by murine gut intraepithelial lymphocytes. Eur J Immunol. 1993;23:2049–2052. [PubMed] [Google Scholar]

21. Becker J, Craig E A. Heat shock proteins as molecular chaperones. Eur J Biochem. 1994;219:11–23. [PubMed] [Google Scholar]

22. Billingham M E J, Carney S, Butler R, Collston M J. A mycobacterial heat shock protein induces antigen-specific suppression of adjuvant arthritis, but is not itself arthritogenic. J Exp Med. 1990;171:339–344. [PMC free article] [PubMed] [Google Scholar]

23. Birk O S, Douek D C, Elias D, Takacs K, Dewchand H, Gur S L, Walker M D, van der Zee R, Cohen I R, Altmann D M. A role of Hsp60 in autoimmune diabetes. Analysis in a transgenic model. Proc Natl Acad Sci USA. 1996;93:1032–1037. [PMC free article] [PubMed] [Google Scholar]

24. Birnbaum G, Kotilinek L. Antibodies to 70-kD heat shock protein are present in CSF and sera from patients with multiple sclerosis. Neurology. 1993;43:A162. . (Abstract.) [Google Scholar]

25. Birnbaum G, Kotilinek L, Albrecht L. Spinal fluid lymphocytes from a subgroup of multiple sclerosis patients respond to mycobacterial antigens. Ann Neurol. 1993;34:294–300. [PubMed] [Google Scholar]

26. Birnbaum G, Kotilinek L, Schlievert P, Clark H B, Trotter J, Horvath E, Gao E, Cox M, Braun P E. Heat shock proteins and experimental autoimmune encephalomyelitis (EAE): I. Immunization with a peptide of the myelin protein 2′,3′ cyclic nucleotide 3′ phosphodiesterase that is cross-reactive with a heat shock protein alters the course of EAE. J Neurosci Res. 1996;44:381–396. [PubMed] [Google Scholar]

27. Blond-Elguindi S, Cwirla S E, Dower W J, Lipshutz R J, Sprang S R, Sambrook J F, Gething M J. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell. 1993;75:717–728. [PubMed] [Google Scholar]

28. Bonato V L D, Lima V M F, Tascon R E, Lowrie D B, Silva C L. Identification and characterization of protective T cells in hsp65 DNA-vaccinated and _Mycobacterium tuberculosis_-infected mice. Infect Immun. 1998;66:169–175. [PMC free article] [PubMed] [Google Scholar]

29. Bonnerot C, Marks M, Cosson P, Robertson E, Bikof E, Germain R, Bonifacino J. Association with Bip and aggregation of class II MHC molecules synthesized in the absence of invariant chain. EMBO J. 1994;13:934–944. [PMC free article] [PubMed] [Google Scholar]

30. Boog C J, De Graeff-Meeder E R, Lucassen M A, Van der Zee R, Voorhorst-Ogink M M, van Kooten P J, Geuze H J, van Eden W. Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. J Exp Med. 1992;175:1805–1810. [PMC free article] [PubMed] [Google Scholar]

31. Born W, Hall L, Dallas A, Boymel J, Shinnick T, Young D, Brehnan P, O’Brien R. Recognition of a peptide antigen by heat shock-reactive γδ T lymphocytes. Science. 1990;249:67–69. [PubMed] [Google Scholar]

32. Bras A, Aguas A P. Diabetes-prone NOD mice are resistant to Mycobacterium avium and the infection prevents autoimmune disease. Immunology. 1996;89:20–25. [PMC free article] [PubMed] [Google Scholar]

33. Brett S J, Cease K B, Berzofsky J A. Influence of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structure on the products of processing. J Exp Med. 1988;168:357–373. [PMC free article] [PubMed] [Google Scholar]

34. Brooks A, Hartley S, Kjer-Nielsen L, Perery J, Goodnow C C, Basten A, McCluskey J. Class II-restricted presentation of an endogenously derived immunodominant T-cell determinant of hen egg lysozyme. Proc Natl Acad Sci USA. 1991;88:3290–3294. [PMC free article] [PubMed] [Google Scholar]

35. Brown J H, Jardetzky T S, Gorga J C, Stern L J, Urban R G, Strominger J L, Wiley D C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;354:33–39. [PubMed] [Google Scholar]

36. Brudzynski K, Martinez V, Gupta R S. Secretory granule autoantigen in insulin-dependent diabetes mellitus is related to the 62 kDa heat-shock protein (hsp60) J Autoimmun. 1992;5:453–463. [PubMed] [Google Scholar]

37. Brudzynski K, Martinez V, Gupta R S. Immunocytochemical localization of heat-shock protein 60-related protein in beta-cell secretory granules and its altered distribution in non-obese diabetic mice. Diabetologia. 1992;35:316–324. [PubMed] [Google Scholar]

38. Brunham R C, Peeling R W. Chlamydia trachomatis antigens: role in immunity and pathogenesis. Infect Agents Dis. 1994;3:218–233. [PubMed] [Google Scholar]

39. Buchmeier N A, Heffron F. Induction of Salmonella stress proteins upon infection of macrophages. Science. 1990;248:730–732. [PubMed] [Google Scholar]

40. Celis L, Vandevyver C, Geusens P, Dequeker J, Raus J, Zhang J. Clonal expansion of mycobacterial heat-shock protein-reactive T lymphocytes in the synovial fluid and blood of rheumatoid arthritis patients. Arthritis Rheum. 1997;40:510–519. [PubMed] [Google Scholar]

41. Ciupitu A-M T, Petersson M, O’Donell C L, Williams K, Jidal S, Kiessling R, Welsh R M. Immunization with a lymphocytic choriomenigitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med. 1998;187:685–691. [PMC free article] [PubMed] [Google Scholar]

42. Cohen I R. Autoimmunity to chaperones in the pathogenesis of arthritis and diabetes. Annu Rev Immunol. 1991;9:567–589. [PubMed] [Google Scholar]

43. Cohen I R, Young D B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today. 1991;12:105–110. [PubMed] [Google Scholar]

44. Conroy S E, Faulds G B, Williams W, Latchman D S, Isenberg D A. Detection of autoantibodies to the 90 kD heat shock protein in SLE and other autoimmune diseases. Br J Rheumatol. 1994;33:923–926. [PubMed] [Google Scholar]

45. Conroy S E, Tucker L, Latchman D S, Isenberg D A. Incidence of anti Hsp90 and 70 antibodies in children with SLE, juvenile dermatomyositis and juvenile chronic arthritis. Clin Exp Rheumatol. 1996;14:99–104. [PubMed] [Google Scholar]

46. Constant P, Davodeau F, Peyrat M A, Pouquet Y, Puzo G, Bonneville M, Fournie J J. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science. 1994;264:267–270. [PubMed] [Google Scholar]

47. Craig E A, Gambill B D, Nelson R J. Heat shock proteins: Molecular chaperones of protein biogenesis. Microbiol Rev. 1993;57:402–412. [PMC free article] [PubMed] [Google Scholar]

48. Craig E A, Weissman J S, Horwich A L. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell. 1994;78:365–372. [PubMed] [Google Scholar]

49. Cristau B, Schafer P H, Pierce S K. Heat shock enhances antigen processing and accelerates the formation of compact class II alpha beta dimers. J Immunol. 1994;152:1546–1556. [PubMed] [Google Scholar]

50. Danieli M G, Candela M, Ricciatti A M, Reginelli R, Danieli G, Cohen I R, Gabrielli A. Antibodies to mycobacterial 65 kDa heat shock protein in systemic sclerosis (scleroderma) J Autoimmun. 1992;5:443–452. [PubMed] [Google Scholar]

51. Danilition S L, Maclean I W, Peeling R, Winston S, Brunham R C. The 75-kilodalton protein of Chlamydia trachomatis: a member of the heat shock protein 70 family. Infect Immun. 1990;58:189–196. [PMC free article] [PubMed] [Google Scholar]

52. Deane K H, Jecock R M, Pearce J H, Gaston J S. Identification and characterization of a DR4-restricted T cell epitope within chlamydia heat shock protein 60. Clin Exp Immunol. 1997;109:439–445. [PMC free article] [PubMed] [Google Scholar]

53. Deepe G S, Jr, Gibbons R, Brunner G D, Gomez F J. A protective domain of heat-shock protein 60 from Histoplasma capsulatum. J Infect Dis. 1996;174:828–834. [PubMed] [Google Scholar]

54. Degen E, Cohen-Doyle M F, Williams D B. Efficient dissociation of the p88 chaperone from major histocompatibility complex class I molecules requires both β2 microglobulin and peptide. J Exp Med. 1992;175:1653–1661. [PMC free article] [PubMed] [Google Scholar]

55. De Graeff-Meeder E R, Voorhorst M, van Eden W, Schuurman H J, Huber J, Barkley D, Maini R N, Kuis W, Rijkers G T, Zegers B J. Antibodies to the mycobacterial 65-kd heat-shock protein are reactive with synovial tissue of adjuvant arthritic rats and patients with rheumatoid arthritis and osteoarthritis. Am J Pathol. 1990;137:1013–1017. [PMC free article] [PubMed] [Google Scholar]

56. De Graeff-Meeder E R, Van der Zee R, Rijkers G T, Schuurman H-J, Kuis W, Bijlsma J W J, Zegers B J M, van Eden W. Recognition of human 60 kD heat shock protein by mononuclear cells from patients with juvenile chronic arthritis. Lancet. 1991;337:1368–1372. [PubMed] [Google Scholar]

57. De Graeff-Meeder, E. R., W. van Eden, G. T. Rijkers, B. J. Prakken, B. J. Zegers, and W. Kuis. 1993. Heat shock proteins and juvenile chronic arthritis. Clin. Exp. Rheumatol. 11(Suppl. 9):S25–S28. [PubMed]

58. Del Giudice G. In vivo carrier effect of heat shock proteins in conjugated vaccine constructs. In: van Eden W, Young D B, editors. Stress proteins in medicine. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 533–545. [Google Scholar]

59. Del Giudice G, Gervaix A, Costantino P, Wyler C-A, Tougne C, De Graeff-Meeder E R, van Embden J, Van der Zee R, Nencioni L, Rappuoli R, Suter S, Lambert P-H. Priming to heat shock proteins in infants vaccinated against pertussis. J Immunol. 1993;150:2025–2032. [PubMed] [Google Scholar]

60. DeNagel D C, Pierce S K. A case of chaperones in antigen processing. Immunol Today. 1992;13:86–89. [PubMed] [Google Scholar]

61. DiCesare S, Poccia F, Mastino A, Colizzi V. Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HIV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity. Immunology. 1992;76:341–343. [PMC free article] [PubMed] [Google Scholar]

62. Dragon E A, Sias S R, Kato E A, Gabe J D. The genome of Trypanosoma cruzi contains a constitutively expressed tandemly arranged multicopy gene homologous to a major heat shock protein. Mol Cell Biol. 1987;7:1271–1275. [PMC free article] [PubMed] [Google Scholar]

63. D’Souza C D, Cooper A M, Frank A A, Mazzaccaro R J, Bloom B R, Orme I M. An anti-inflammatory role for γδ T lymphocytes in acquired immunity to Mycobacterium tuberculosis. J Immunol. 1997;158:1217–1221. [PubMed] [Google Scholar]

64. Elias D, Meilin A, Ablamunits V, Birk O S, Carmi P, Koenen-Waisman S, Cohen I R. Hsp60 peptides therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Diabetes. 1997;46:758–764. [PubMed] [Google Scholar]

65. Elias D, Cohen I R. Peptide therapy for diabetes in NOD mice. Lancet. 1994;343:704–706. [PubMed] [Google Scholar]

66. Elias D, Markovits D, Reshef T, Van der Zee R, Cohen I R. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci USA. 1990;87:1576–1580. [PMC free article] [PubMed] [Google Scholar]

67. Elias D, Marens H, Reshef T, Ablamunitis V, Cohen I R. Induction of diabetes in standard mice by injection with the p277 peptide of a 60-kDa heat shock protein. Eur J Immunol. 1995;25:2851–2857. [PubMed] [Google Scholar]

68. Elias D, Reshef T, Birk O S, Van der Zee R, Walker M D, Cohen I R. Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc Natl Acad Sci USA. 1991;88:3088–3091. [PMC free article] [PubMed] [Google Scholar]

69. Elsaghier A, Prantera C, Bothamley G, Wilkins E, Jindal S, Ivanyi J. Disease association of antibodies to human and mycobacterial hsp70 and hsp60 stress proteins. Clin Exp Immunol. 1992;89:305–309. [PMC free article] [PubMed] [Google Scholar]

70. Engman D M, Kirchhoff L V, Donelson J E. Molecular cloning of mtp70, a mitochondrial member of the hsp70 family. Mol Cell Biol. 1989;9:5163–5168. [PMC free article] [PubMed] [Google Scholar]

71. Engstrand L, Scheynius A, Pahlson C. An increased number of γ/δ T cells and gastric epithelial cell expression of the groEL stress-protein homologue in _Helicobacter pylori_-associated chronic gastritis of the antrum. Am J Gastroenterol. 1991;86:976–980. [PubMed] [Google Scholar]

72. Erkeller-Yueksel F M, Isenberg D A, Dhillon V B, Latchman D S, Lydyard P M. Surface expression of heat shock protein 90 by blood mononuclear cells from patients with systemic lupus erythematosus. J Autoimmun. 1992;5:803–814. [PubMed] [Google Scholar]

73. Falk K, Rötschke O, Deres K, Metzger J, Jung G, Rammensee H G. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests on allele-specific T cell epitope forecast. J Exp Med. 1991;174:425–434. [PMC free article] [PubMed] [Google Scholar]

74. Faulds G B, Isenberg D A, Latchman D S. The tissue-specific elevation in synthesis of 90 kD-heat shock protein precedes the onset of disease in lupus-prone MRL/lpr mice. J Rheumatol. 1994;21:234–238. [PubMed] [Google Scholar]

75. Fenton W A, Kashi Y, Furtak K, Horwich A L. Residues in chaperon in GroEL required for polypeptide binding and release. Nature. 1994;371:614–619. [PubMed] [Google Scholar]

76. Ferber I, Schönrich G, Schenke J, Mellor A L, Hämmerling G J, Arnold B. Levels of peripheral T cell tolerance induced by different doses of tolerogen. Science. 1994;263:674–676. [PubMed] [Google Scholar]

77. Ferrarini M, Heltai S, Zocchi M R, Rugarli C. Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer. 1992;51:613–619. [PubMed] [Google Scholar]

78. Ferrero R L, Thilberge J M, Kansau I, Wuscher N, Huerre M, Labigne A. The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc Natl Acad Sci USA. 1995;92:6499–6503. [PMC free article] [PubMed] [Google Scholar]

79. Fields P I, Swanson R V, Haidaris C G, Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA. 1986;83:5189–5193. [PMC free article] [PubMed] [Google Scholar]

80. Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein B S, Voss S D, Morrissey L W, DeMars R, Welch W J, Bolhuis R L H, Sondel P M. Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science. 1990;250:1269–1273. [PubMed] [Google Scholar]

81. Fischer H P, Charrock C E, Colston M J, Panayi G S. Limiting dilution analysis of proliferative T cell responses to mycobacterial 65-kD heat-shock protein fails to show significant frequency differences between synovial fluid and peripheral blood of patients with rheumatoid arthritis. Eur J Immunol. 1991;21:2937–2941. [PubMed] [Google Scholar]

82. Flajnik M F, Canel C, Kramer J, Kasahara M. Which came first, MHC class I or MHC class II? Immungenetics. 1991;33:295–300. [PubMed] [Google Scholar]

83. Flynn G C, Chappell G T, Rothman J E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science. 1989;245:385–390. [PubMed] [Google Scholar]

84. Flynn G C, Pohl J, Flocco M T, Rothman J E. Peptide-binding specificity of the molecular chaperone BiP. Nature. 1991;353:726–730. [PubMed] [Google Scholar]

85. Ford A L, Britton W J, Armati P J. Schwann cells are able to present exogenous mycobacterial hsp70 to antigen-specific T lymphocytes. J Neuroimmunol. 1993;43:151–159. [PubMed] [Google Scholar]

86. Freedman M S, Buu N N, Ruijs T C, Williams K, Antel J P. Differential expression of heat shock proteins by human glial cells. J Neuroimmunol. 1992;41:231–238. [PubMed] [Google Scholar]

87. Freedman M S, Bitar R, Antel J P. Gamma delta T-cell-human glial cell interactions. II. Relationship between heat shock protein expression and susceptibility to cytolysis. J Neuroimmunol. 1997;74:143–148. [PubMed] [Google Scholar]

88. Frydman J, Nimmesgern E, Ohtsuka K, Hartl F U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature. 1994;370:111–117. [PubMed] [Google Scholar]

89. Fu Y X, Kersh G, Vollmer M, Kalataradi H, Heyborne K, Reardon C, Miles C, O’Brien R, Born W. Structural requirements for peptides that stimulate a subset of γδ T cells. J Immunol. 1994;152:1578–1588. [PubMed] [Google Scholar]

90. Gammon G, Sercarz E. How some T cells escape tolerance induction. Nature. 1989;342:183–185. [PubMed] [Google Scholar]

91. Gao Y L, Brosnan C F, Raine C S. Experimental autoimmune encephalomyelitis. Qualitative and semiqualitative differences in heat shock protein 60 expression in the central nervous system. J Immunol. 1995;154:3548–3556. [PubMed] [Google Scholar]

92. Garsia R J, Hellqvist L, Booth R J, Radford A J, Britton W J, Astbury L, Trent R J, Basten A. Homology of the 70-kilodalton antigens from Mycobacterium leprae and Mycobacterium tuberculosis 71-kilodalton antigen and with the conserved heat shock protein 70 of eucaryotes. Infect Immun. 1989;57:204–212. [PMC free article] [PubMed] [Google Scholar]

93. Georgopoulos J, Welch W J. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol. 1993;9:601–634. [PubMed] [Google Scholar]

94. Gomez F J, Gomez A M, Deepe G S J. An 80-kilodalton antigen from Histoplasma capsulatum that has homology to heat shock protein 70 induces cell-mediated immune responses and protection in mice. Infect Immun. 1992;60:2565–2573. [PMC free article] [PubMed] [Google Scholar]

95. Gomez F J, Allendoerfer R, Deepe G S., Jr Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis. Infect Immun. 1995;63:2587–2595. [PMC free article] [PubMed] [Google Scholar]

96. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science. 1998;279:1737–1740. [PubMed] [Google Scholar]

97. Guerder S, Meyerhoff J, Flavell R. The role of the T cell costimulator B7-1 in autoimmunity and the induction and maintenance of tolerance to peripheral antigen. Immunity. 1994;1:155–166. [PubMed] [Google Scholar]

98. Haas W, Pereira P, Tonegawa S. Gamma/delta cells. Annu Rev Immunol. 1993;11:637–685. [PubMed] [Google Scholar]

99. Hanawa T, Yamamoto T, Kamiya S. Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect Immun. 1995;63:4595–4599. [PMC free article] [PubMed] [Google Scholar]

100. Hansen K, Bangsborg J M, Fjordvang H, Pedersen N S, Hindersson P. Immunochemical characterization of, and isolation of the gene for Borrelia burgdorferi immunodominant 60-kilodalton antigen common to a wide range of bacteria. Infect Immun. 1988;56:2047–2053. [PMC free article] [PubMed] [Google Scholar]

101. Haque M A, Yoshino S, Inada S, Nomaguchi H, Tokunaga O, Kohashi O. Suppression of adjuvant arthritis in rats by induction of oral tolerance to mycobacterial 65-kDa heat shock protein. Eur J Immunol. 1996;26:2650–2656. [PubMed] [Google Scholar]

102. Harding C V, Pfeifer J D. Antigen expressed by Salmonella typhimurium is processed for class I major histocompatibility complex presentation by macrophages but not infected epithelial cells. Immunology. 1994;83:670–674. [PMC free article] [PubMed] [Google Scholar]

103. Harding C V, Song R. Phagocytic processing of exogenous particular antigens by macrophages for presentation by MHC class I molecules. J Immunol. 1994;153:4925–4933. [PubMed] [Google Scholar]

104. Haregewoin A, Singh B, Gupta R S, Finberg R W. A mycobacterial heat-shock protein-responsive γ/δ T cell clone also responds to the homologue human heat shock protein: a possible link between infection and autoimmunity. J Infect Dis. 1991;163:156–160. [PubMed] [Google Scholar]

105. Haregewoin A, Soman G, Hom R C, Finberg R W. Human γ/δ+ T cells respond to mycobacterial heat-shock protein. Nature. 1989;340:309–312. [PubMed] [Google Scholar]

106. Hartl F-U, Hlodan R, Langer T. Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci. 1994;19:21–25. [PubMed] [Google Scholar]

107. Hartl F U. Molecular chaperones in cellular protein folding. Nature. 1996;381:571–580. [PubMed] [Google Scholar]

108. Hasan A, Childerstone A, Pervin K, Shinnick T, Mizushima Y, van der Zee R, Vaughan R, Lehner T. Recognition of a unique peptide epitope of the mycobacterial and human heat shock protein 65-60 antigen by T cells of patients with recurrent oral ulcers. Clin Exp Immunol. 1995;99:392–397. [PMC free article] [PubMed] [Google Scholar]

109. Hasan A, Fortune F, Wilson A, Warr K, Shinnick T, Mizuhima Y, van der Zee R, Stanford M R, Sanderson J, Lehner T. Role of gamma delta T cells in pathogenesis and diagnosis of Behcet’s disease. Lancet. 1996;347:789–794. [PubMed] [Google Scholar]

110. Hedstrom R, Culpepper J, Harrison R A, Agabian N, Newport G. Schistosome heat-shock proteins are immunologically distinct host-like antigens. Mol Biochem Parasitol. 1988;29:275–282. [PubMed] [Google Scholar]

111. Hendrix R W. Purification and properties of GroE, a host protein involved in bacteriophage assembly. J Mol Biol. 1979;129:375–393. [PubMed] [Google Scholar]

112. Hermann E, Lohse A W, Van der Zee R, van Eden W, Mayet W, Probst P, Poralla T, Meyer zum Büschenfelde K-H, Fleischer B. Synovial fluid-derived Yersinia-reactive T cells responding to human 65-kDa heat-shock protein and heat-stressed antigen-presenting cells. Eur J Immunol. 1991;21:2139–2143. [PubMed] [Google Scholar]

113. Hermann E, Lohse A W, Mayet W J, Van der Zee R, van Eden W, Probst P, Poralla T, Meyer zum Büschenfelde K-H, Fleischer B. Stimulation of synovial fluid mononuclear cells with the human 65-kD heat shock protein or with live enterobacteria leads to preferential expansion of TCR-γ/δ+ lymphocytes. Clin Exp Immunol. 1992;89:427–433. [PMC free article] [PubMed] [Google Scholar]

114. Hermann E, Ackermann B, Duchmann R, Meyer zum Büschenfelde K H. Synovial fluid MHC-unrestricted γδ T lymphocytes contribute to antibacterial and anti-self cytotoxicity in the spondylarthropathies. Clin Exp Rheumatol. 1995;13:187–191. [PubMed] [Google Scholar]

115. Heufelder A E, Goellner J R, Wenzel B E, Bahn R S. Immunohistochemical detection and localization of a 72-kilodalton heat shock protein in autoimmune thyroid disease. J Clin Endocrinol Metab. 1992;74:724–731. [PubMed] [Google Scholar]

116. Himeno K, Hisaeda H. Contribution of 65-kDa heat shock protein induced by gamma delta T cells to protection against Toxoplasma gondii infection. Immunol Res. 1996;15:258–264. [PubMed] [Google Scholar]

117. Hindersson P, Knudsen J D, Axelsen N H. Cloning and expression of Treponema pallidum common antigen (Tp-4) in E. coli K-12. J Gen Microbiol. 1987;133:587–596. [PubMed] [Google Scholar]

118. Hirata D, Hirai I, Iwamoto M, Yoshio T, Takeda A, Masuyama J I, Mimori A, Kano S, Minota S. Preferential binding with Escherichia coli hsp60 of antibodies prevalent in sera from patients with rheumatoid arthritis. Clin Immunol Immunopathol. 1997;82:141–148. [PubMed] [Google Scholar]

119. Hiromatsu K, Yoshikai Y, Matsuzaki G, Ohga S, Muramori K, Matsumoto K, Bluestone J A, Nomoto K. A protective role of γ/δ T cells in primary infection with Listeria monocytogenes in mice. J Exp Med. 1992;175:49–56. [PMC free article] [PubMed] [Google Scholar]

120. Hoffman P S, Butler C A, Quinn F D. Cloning and temperature-dependent expression in Escherichia coli of a Legionella pneumophila gene coding for a genus-common 60-kilodalton antigen. Infect Immun. 1989;57:1731–1739. [PMC free article] [PubMed] [Google Scholar]

121. Holoshitz J, Koning F, Coligan J E, De Bruyn J, Strober S. Isolation of CD4−CD8− mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature. 1989;339:226–229. [PubMed] [Google Scholar]

122. Howard J C. Supply and transport of peptides presented by class I MHC molecules. Curr Opin Immunol. 1995;7:69–76. [PubMed] [Google Scholar]

123. Imani F, Soloski M J. Heat shock proteins can regulate expression of the Tla region-encoded class Ib molecule Qa-1. Proc Natl Acad Sci USA. 1991;88:10475–10479. [PMC free article] [PubMed] [Google Scholar]

124. Jäättelä M. Effects of heat shock on cytolysis mediated by NK cells, LAK cells, activated monocytes and TNFs-α and β Scand J Immunol. 1990;31:175–182. [PubMed] [Google Scholar]

125. Jackson M, Cohen-Doyle M, Peterson P, Williams D. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88/IP90) Science. 1994;263:348–387. [PubMed] [Google Scholar]

126. Jacquier-Sarlin M R, Fuller K, Dinh-Xuan A T, Richard M J, Polla B S. Protective effects of hsp70 in inflammation. Experientia. 1994;50:1031–1038. [PubMed] [Google Scholar]

127. Janeway C A. How the immune system recognizes invaders. Sci Am. 1993;269:72–79. [PubMed] [Google Scholar]

128. Janeway C A. Thymic selection: two pathways to life and two to death. Immunity. 1994;1:3–6. [PubMed] [Google Scholar]

129. Jardetzky T S, Lane W S, Robinson R A, Madden D R, Wiley D C. Identification of self peptides bound to purified HLA-B27. Nature. 1991;353:326–329. [PubMed] [Google Scholar]

130. Jarjour W N, Jeffries B D, Davis J S, Welch W J, Mimura T, Winfield J B. Autoantibodies to human stress proteins. A survey of various rheumatic and other inflammatory diseases. Arthritis Rheum. 1991;34:1133–1138. [PubMed] [Google Scholar]

131. Jendoubi M, Bonnefoy S. Identification of a heat shock-like antigen in P. falciparum, related to the heat shock protein 90 family. Nucleic Acids Res. 1988;16:10928–10931. [PMC free article] [PubMed] [Google Scholar]

132. Jindal S, Dudani A K, Singh B, Harley C B, Gupta R S. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonin and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol. 1989;9:2279–2283. [PMC free article] [PubMed] [Google Scholar]

133. Johnson K, Charles I, Dougan G, Pickard D, O’Gaora P, Costa G, Ali T, Miller I, Hormaeche C. The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol. 1991;5:401–407. [PubMed] [Google Scholar]

134. Johnson K S, Wells K, Bock J V, Nene V, Taylor D W, Cordingley J S. The 86-kilodalton antigen from Schistosoma mansoni is a heat-shock protein homologous to yeast hsp90. Mol Biochem Parasitol. 1989;36:19–28. [PubMed] [Google Scholar]

135. Jones D B, Coulson A F W, Duff G W. Sequence homologies between hsp60 and autoantigens. Immunol Today. 1993;14:115–118. [PubMed] [Google Scholar]

136. Jones L A, Chin L T, Merriam G R, Nelson L M, Kruisbeek A M. Failure of clonal deletion in neonatally thymectomized mice: Tolerance is preserved through clonal anergy. J Exp Med. 1990;172:1277–1285. [PMC free article] [PubMed] [Google Scholar]

137. Kageyama Y, Koide Y, Miyamoto S, Inoue T, Yoshida T O. The biased V gamma gene usage in the synovial fluid of patients with rheumatoid arthritis. Eur J Immunol. 1994;24:1122–1129. [PubMed] [Google Scholar]

138. Kaneko S, Suzuki N, Yamashita N, Nagafuchi H, Nakajima T, Wakisaka S, Yamamoto S, Sakane T. Characterization of T cells specific for an epitope of human 60-kD heat shock protein (hsp) in patients with Behcet’s disease (BD) in Japan. Clin Exp Immunol. 1997;108:204–212. [PMC free article] [PubMed] [Google Scholar]

139. Kantengwa S, Donati Y R A, Clerget M, Parini Maridonneau I, Sinclair F, Marethoz E, Rees A D M, Slosman D O, Polla B S. Heat shock proteins: an autoprotective mechanism for inflammatory cells? Semin Immunol. 1991;3:49–56. [PubMed] [Google Scholar]

140. Kaufman D L, Clare-Salzler M, Tian J, Forsthuber T, Ting G S P, Robinson P, Atkinson M A, Sercarz E E, Tobin A J, Lehmann P V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993;366:69–72. [PMC free article] [PubMed] [Google Scholar]

141. Kaufmann S H E. Heat shock proteins and the immune response. Immunol Today. 1990;11:129–136. [PubMed] [Google Scholar]

142. Kaufmann S H E. Heat shock proteins and pathogenesis of bacterial infections. Springer Semin Immunopathol. 1991;13:25–36. [PubMed] [Google Scholar]

143. Kaufmann S H E, Schoel B. Heat shock proteins as antigens in immunity against infection and self. In: Morimoto R I, Tissieres A, Georgopoulos C, editors. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press; 1994. pp. 495–531. [Google Scholar]

144. Kaufmann S H E, Schoel B, Wand-Württenberger A, Steinhoff U, Munk M E, Koga T. T cells, stress proteins and pathogenesis of mycobacterial infections. Curr Top Microbiol Immunol. 1990;155:125–141. [PubMed] [Google Scholar]

145. Kaufmann S H E, Schoel B, Koga T, Wand-Württenberger A, Munk M E, Steinhoff U. Heat shock protein 60: implications for pathogenesis of and protection against bacterial infections. Immunol Rev. 1991;121:67–90. [PubMed] [Google Scholar]

146. Kaufmann S H E, Väth U, Thole J E R, van Embden J D A, Emmrich F. Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 65 kilodalton protein. Eur J Immunol. 1987;178:351–357. [PubMed] [Google Scholar]

147. Kaufmann S H E. Immunity to intracellular bacteria. In: Paul W E, editor. Fundamental immunology. 4th ed. New York, N.Y: Lippincott-Raven; 1998. pp. 1345–1381. [Google Scholar]

148. Kaufmann S H E. γ/δ and other unconventional T lymphocytes. What do they see and what do they do. Proc Natl Acad Sci USA. 1996;93:2272–2279. [PMC free article] [PubMed] [Google Scholar]

149. Kaur I, Voss S D, Gupta R S, Schell K, Fisch P, Sondel P M. Human peripheral gamma/delta T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. J Immunol. 1993;150:2046–2055. [PubMed] [Google Scholar]

150. Keystone E C, Rittershaus C, Wood N, Snow K M, Flatow J, Purvis J C, Poplonski L, Kung P C. Elevation of a γδ T cell subset in peripheral blood and synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol. 1991;84:78–82. [PMC free article] [PubMed] [Google Scholar]

151. Khanna R, Burrows S R, Thomson S A, Moss D J, Cresswell P, Poulsen L M, Cooper L. Class I processing-defective Burkitt’s lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. J Immunol. 1997;158:3619–3625. [PubMed] [Google Scholar]

152. Kim B S, Jang Y-S. Constraints in antigen processing results in unresponsiveness to a T cell epitope of hen egg lysozyme in C57BL/6 mice. Eur J Immunol. 1992;22:775–782. [PubMed] [Google Scholar]

153. Kim H T, Nelson E L, Clayberger C, Sanjanwala M, Sklar J, Krensky A M. Gamma delta T cell recognition of tumor Ig peptide. J Immunol. 1995;154:1614–1623. [PubMed] [Google Scholar]

154. Kimura Y, Tomida S, Matsumoto Y, Hiromatsu K, Yoshikai Y. Evidence for the early recruitment of T-cell receptor gamma delta+ T cells during rat listeriosis. Immunology. 1996;87:21–28. [PMC free article] [PubMed] [Google Scholar]

155. Kimura Y, Yamada K, Sakai T, Mishima K, Nishimura H, Matsumoto Y, Singh M, Yoshikai Y. The regulatory role of heat shock protein 70-reactive CD4+ T cells during rat listeriosis. Int Immunol. 1998;10:117–130. [PubMed] [Google Scholar]

156. Kindas-Muegge I, Steiner G, Smolen J S. Similar frequency of autoantibodies against 70-kD class heat-shock proteins in healthy subjects and systemic lupus erythematosus patients. Clin Exp Immunol. 1993;92:46–50. [PMC free article] [PubMed] [Google Scholar]

157. Kingston A E, Hicks C A, Colston M J, Billingham M E. A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin Exp Immunol. 1996;103:77–82. [PMC free article] [PubMed] [Google Scholar]

158. Kjeldsen-Kragh J, Quayle A J, Vinje O, Natvig J B, Forre O. A high proportion of the Vδ1+ synovial fluid γδ T cells in juvenile rheumatoid arthritis patients express the very early activation marker CD69, but carry the high molecular weight isoform of the leucocyte common antigen (CD45 RA) Clin Exp Immunol. 1993;91:202–206. [PMC free article] [PubMed] [Google Scholar]

159. Kleindienst R, Xu Q, Willeit J, Waldenberger F R, Weimann S, Wick G. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol. 1993;142:1927–1937. [PMC free article] [PubMed] [Google Scholar]

160. Koga T, Wand-Württenberger A, DeBruyn J, Munk M E, Schoel B, Kaufmann S H E. T cells against a bacterial heat shock protein recognize stressed macrophages. Science. 1989;245:1112–1115. [PubMed] [Google Scholar]

161. Könen-Waisman S, Fridkin M, Cohen I R. Self and foreign 60-kilodalton heat shock protein T cell epitope peptides serve as immunogenic carriers for a T cell-independent sugar antigen. J Immunol. 1995;154:5977–5985. [PubMed] [Google Scholar]

162. Kotani T, Aratake Y, Hirai K, Hirai I, Ohtaki S. High expression of heat shock protein 60 in follicular cells of Hashimoto’s thyroiditis. Autoimmunity. 1996;25:1–8. [PubMed] [Google Scholar]

163. Ladel C H, Blum C, Dreher A, Reifenberg K, Kaufmann S H E. Protective role of γ/δ T cells and α/β T cells in tuberculosis. Eur J Immunol. 1995;25:2877–2881. [PubMed] [Google Scholar]

164. Lamb J R, Bal V, Mendez-Samperio P, Mehlert A, Rothbard J, Jindal S, Young R A, Young D B. Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol. 1989;1:191–196. [PubMed] [Google Scholar]

165. Lammert E, Arnold D, Nijenhuis M, Momburg F, Hämmerling G J, Brunner J, Stefanovic S, Rammensee H G, Schild H. The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP. Eur J Immunol. 1997;27:923–927. [PubMed] [Google Scholar]

166. Latchman D S, Isenberg D A. The role of hsp90 in SLE. Autoimmunity. 1994;19:211–218. [PubMed] [Google Scholar]

167. Launois P, ND̀iaye M, Sarthou J L, Millan J, Bach M A. Anti-peripheral nerve antibodies in leprosy patients recognize an epitope shared by the M. leprae 65 kDa heat shock protein. J Autoimmun. 1992;5:745–757. [PubMed] [Google Scholar]

168. Lee M G, Atkinson B L, Giannini S H, van der Ploeg L H T. Structure and expression of the hsp70 gene family of Leishmania major. Nucleic Acids Res. 1988;16:9567–9585. [PMC free article] [PubMed] [Google Scholar]

169. Lehner T, Childerstone A, Pervin K, Hasan A, Direskeneli H, Stanford M R, Whiston R, Kasp E, Dumonde D C, Shinnick T, van der Zee R, Mizushima Y. Stress proteins in Bechet’s disease and experimental uveitis. In: van Eden W, Young D B, editors. Stress proteins in medicine. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 163–183. [Google Scholar]

170. Lehner T, Lavery E, Smith R, van der Zee R, Mizushima Y, Shinnick T. Association between the 65-kilodalton heat shock protein, Streptococcus sanguis, and the corresponding antibodies in Behcet’s disease. Infect Immun. 1991;59:1434–1441. [PMC free article] [PubMed] [Google Scholar]

171. Lenschow D J, Walunas T L, Bluestone J A. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. [PubMed] [Google Scholar]

172. Li H, Lebedeva M I, Llera A S, Fields B A, Brenner M B, Mariuzza R A. Structure of the Vδ domain of a human γδ T-cell antigen receptor. Nature. 1998;391:502–506. [PubMed] [Google Scholar]

173. Li S G, Quayle A J, Shen Y, Kjeldsen-Kragh J, Oftung F, Gupta R S, Natvig J B, Forre O T. Mycobacteria and human heat shock protein-specific cytotoxic T lymphocytes in rheumatoid synovial inflammation. Arthritis Rheum. 1992;35:270–281. [PubMed] [Google Scholar]

174. Li Z, Srivastava P K. Tumor rejection antigen gp96/gp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J. 1993;12:3143–3151. [PMC free article] [PubMed] [Google Scholar]

175. Life P F, Bassey E O E, Gaston H J S. T-cell recognition of bacterial heat shock proteins in inflammatory arthritis. Immunol Rev. 1991;121:113–135. [PubMed] [Google Scholar]

176. Linsley P S, Ledbetter J A. The role of the CD28 receptor during T cell response to antigen. Annu Rev Immunol. 1993;11:191–212. [PubMed] [Google Scholar]

177. Lopez-Guerrero J A, Ortiz M A, Paez E, Bernabeu C, Lopez-Bote J P. Therapeutic effect of recombinant vaccinia virus expressing the 60-kd heat-shock protein on adjuvant arthritis. 1994. Arthritis Rheum. 1994;37:1462–1467. [PubMed] [Google Scholar]

178. Lowrie D B, Silva C L, Colston M J, Ragno S, Tascon R E. Protection against tuberculosis by a plasmid DNA vaccine. Vaccine. 1997;15:834–838. [PubMed] [Google Scholar]

179. Lowrie D B, Tascon R E, Colston M J, Silva C L. Towards a DNA vaccine against tuberculosis. Vaccine. 1995;12:1537–1540. [PubMed] [Google Scholar]

180. Lukacs K V, Lowrie D B, Stokes R W, Colston M J. Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J Exp Med. 1993;178:343–348. [PMC free article] [PubMed] [Google Scholar]

181. Lussow A R, Barrios C, Van Embden J D A, Van der Zee R, Verdini A S, Pessi A, Louis J A, Lambert P-H, Del Giudice G. Mycobacterial heat-shock proteins as carrier molecules. Eur J Immunol. 1991;21:2297–2302. [PubMed] [Google Scholar]

182. MacFarlane J, Blaxter M L, Bishop R P, Miles M A, Kelly J M. Characterization of a Leishmania donovani antigen similar to heat shock protein 70. Biochem Soc Trans. 1989;17:168–169. [Google Scholar]

183. Mackay I R, Bone A, Tuomi T, Elliott R, Mandel T, Karopoulos C, Rowley M J. Lack of autoimmune serological reactions in rodent models of insulin dependent diabetes mellitus. J Autoimmun. 1996;9:705–711. [PubMed] [Google Scholar]

184. Märker-Hermann, E. Personal communication.

185. Mattei D, Ozaki L S, Pereira da Silva L. A Plasmodium falciparum gene encoding a heat shock-like antigen related to the rat 78 kD glucose-regulated protein. Nucleic Acids Res. 1988;16:5204–5208. [PMC free article] [PubMed] [Google Scholar]

186. Matthews R, Burnie J. The role of hsp90 in fungal infection. Immunol Today. 1992;133:345–348. [PubMed] [Google Scholar]

187. Matthews R C, Burnie J P, Howat D, Rowland T, Walton F. Autoantibody to heat shock protein 90 can mediate protection against systemic candidosis. Immunology. 1991;74:20–24. [PMC free article] [PubMed] [Google Scholar]

188. McLean I L, Archer J R, Cawley M I D, Pegley F S, Kidd B L, Thompson P W. Specific antibody response to the mycobacterial 65 kDa stress protein in ankylosing spondylitis and rheumatoid arthritis. Br J Rheumatol. 1990;29:426–429. [PubMed] [Google Scholar]

189. McLennan N, Masters M. GroE is vital for cell-wall synthesis. Nature. 1998;392:139. [PubMed] [Google Scholar]

190. Meilof J F, van der Lelij A, Rokeach L A, Hoch S O, Smeenk R J. Autoimmunity and filariasis. Autoantibodies against cytoplasmic cellular proteins in sera of patients with onchocerciasis. J Immunol. 1993;151:5800–5809. [PubMed] [Google Scholar]

191. Melnick J, Argon Y. Molecular chaperones and the biosynthesis of antigen receptors. Immunol Today. 1995;16:243–250. [PubMed] [Google Scholar]

192. Melnick J, Dul J L, Argon Y. Sequential interaction of chaperonin Bip and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature. 1994;370:373–375. [PubMed] [Google Scholar]

193. Melnick J, Aviel S, Argon Y. The endoplasmic reticulum stress protein GRP94, in addition to Bip, also associates with unassembled immunoglobulin chains. J Biol Chem. 1992;267:21303–21306. [PubMed] [Google Scholar]

194. Morrison R P, Belland R J, Lyng K, Caldwell H D. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med. 1989;170:1271–1283. [PMC free article] [PubMed] [Google Scholar]

195. Mosmann T R, Coffman R L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. [PubMed] [Google Scholar]

196. Mougdil K D, Sercarz E. The T cell repertoire against self determinants and its involvement in autoimmunity and cancer. Clin Immunol Immunopathol. 1994;73:283–289. [PubMed] [Google Scholar]

197. Mowat A M. The regulation of immune response to dietary protein antigens. Immunol Today. 1987;8:93–98. [PubMed] [Google Scholar]

198. Multhoff G, Hightower L E. Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones. 1996;1:167–176. [PMC free article] [PubMed] [Google Scholar]

199. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol. 1997;158:4341–4350. [PubMed] [Google Scholar]

200. Munk M E, Schoel B, Modrow S, Karr R W, Young R A, Kaufmann S H E. Cytolytic T lymphocytes from healthy individuals with specificity to self epitopes shared by the mycobacterial and human 65 kDa heat shock protein. J Immunol. 1989;143:2844–2849. [PubMed] [Google Scholar]

201. Mustafa A S, Lundin K E, Oftung F. Human T cells recognize mycobacterial heat shock proteins in the context of multiple HLA-DR molecules: studies with healthy subjects vaccinated with Mycobacterium bovis BCG and Mycobacterium leprae. Infect Immun. 1993;61:5294–5301. [PMC free article] [PubMed] [Google Scholar]

202. Neefjes J J, Momburg F. Cell biology of antigen presentation. Curr Opin Immunol. 1993;5:27–34. [PubMed] [Google Scholar]

203. Nelson C A, Roof R W, McCourt D W, Unanue E R. Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak. Proc Natl Acad Sci USA. 1992;89:7380–7383. [PMC free article] [PubMed] [Google Scholar]

204. Newcomb J R, Cresswell P. Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated α/β dimers. J Immunol. 1993;150:499–507. [PubMed] [Google Scholar]

205. Nieland T J, Tan M C, Monne-van Muijen M, Koning F, Kruisbeek A M, van Bleek G M. Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci USA. 1996;93:6135–6139. [PMC free article] [PubMed] [Google Scholar]

206. Noll A, Rogenkamp A, Heesemann J, Autenrieth I B. Protective role for heat shock protein-reactive αβ T cells in murine yersiniosis. Infect Immun. 1994;62:2784–2791. [PMC free article] [PubMed] [Google Scholar]

207. Noll A, Autenrieth I B. Immunity against Yersinia enterocolitica by vaccination with Yersinia hsp60 immunostimulating complexes or Yersinia hsp60 plus interleukin-12. Infect Immun. 1996;64:2955–2961. [PMC free article] [PubMed] [Google Scholar]

208. Nossal G J V. Life, death and the immune system. Sci Am. 1993;269:52–62. [PubMed] [Google Scholar]

209. O’Brien R L, Happ M P, Dallas A, Palmer E, Kubo R, Born W. Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derivate form Mycobacterium tuberculosis. Cell. 1989;57:667–674. [PubMed] [Google Scholar]

210. O’Brien R L, Fu Y-X, Cranfill R, Dallas A, Ellis C, Reardon C, Lang J, Carding S R, Kubo R, Born W. Heat shock protein hsp60-reactive γ/δ cells: A large, diversified T-lymphocyte subset with highly focused specificity. Proc Natl Acad Sci USA. 1992;89:4348–4352. [PMC free article] [PubMed] [Google Scholar]

211. Ortmann B, Androlewicz M, Cresswell P. MHC class I/β2 microglobulin complexes associate with the TAP transporter before peptide binding. Nature. 1994;368:864–867. [PubMed] [Google Scholar]

212. Panchapekesan J, Daglis M, Gatenby P. Antibodies to 65 kDa and 70 kDa heat shock proteins in rheumatoid arthritis and systemic lupus erythematosus. Immunol Cell Biol. 1992;70:295–300. [PubMed] [Google Scholar]

213. Peeling R W, Kimani J, Plummer F, Maclean I, Cheang M, Bwayo J, Brunham R C. Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J Infect Dis. 1997;175:1153–1158. [PubMed] [Google Scholar]

214. Peetermans W E. Expression of and immune response to heat shock protein 65 in Crohn’s disease. In: van Eden W, Young D B, editors. Stress proteins in medicine. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 197–211. [Google Scholar]

215. Pelham H R. Speculations on the functions of the major heat shock and glucose-regulated stress proteins. Cell. 1986;46:959–961. [PubMed] [Google Scholar]

216. Perraut R, Lussow A R, Gavoille S, Garroud O, Matile H, Tongue C, Van Embden J, Van der Zee R, Lambert P-H, Gysin J, Del Giudice G. Successful primate immunization with peptide conjugated to purified protein derivate or mycobacterial heat shock proteins in the absence of adjuvants. Clin Exp Immunol. 1993;93:382–386. [PMC free article] [PubMed] [Google Scholar]

217. Pervin K, Childerstone A, Shinnick T, Mizushima Y, van der Zee R, Hasan A, Vaughan R, Lehner T. T cell epitope expression of mycobacterial and homologous human 65-kilodalton heat shock protein peptides in short term cell lines from patients with Behcet’s disease. J Immunol. 1993;151:2273–2282. [PubMed] [Google Scholar]

218. Pfeffer K, Schoel B, Gulle H, Kaufmann S H E, Wagner H. Primary responses of human T cells to mycobacteria: a frequent set of γ/δ T cells are stimulated by protease-resistant ligands. Eur J Immunol. 1990;20:1175–1179. [PubMed] [Google Scholar]

219. Poccia F, Piselli P, Di Cesare S, Bach S, Colizzi V, Mattei M, Bolognesi A, Stirpe F. Recognition and killing of tumour cells expressing heat shock protein 65 kD with immunotoxins containing saporin. Br J Cancer. 1992;66:427–432. [PMC free article] [PubMed] [Google Scholar]

220. Pope R M, Lovis R M, Gupta R S. Activation of synovial fluid T lymphocytes by 60-kd heat-shock proteins in patients with inflammatory synovitis. Arthritis Rheum. 1992;35:43–48. [PubMed] [Google Scholar]

221. Porcelli S, Brenner M B, Greenstein J L, Balk S P, Terhorst C, Bleicher P A. Recognition of cluster of differentiation 1 antigens by human CD4− CD8− cytolytic T lymphocytes. Nature. 1989;341:447–450. [PubMed] [Google Scholar]

222. Prakken A B, van der Zee R, Anderton S M, van Kooten P J, Huis W, van Eden W. Peptide-induced nasal tolerance for a mycobacterial heat shock protein 60 T cell epitope in rats suppresses both adjuvant arthritis and nonmicrobially induced experimental arthritis. Proc Natl Acad Sci USA. 1997;94:3284–3289. [PMC free article] [PubMed] [Google Scholar]

223. Prakken A B, van Eden W, Rijkers G T, Kuis W, Toebes E A, de Graeff-Meeder E R, van der Zee R, Zegers B J. Autoreactivity to human heat shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis Rheum. 1996;39:1826–1832. [PubMed] [Google Scholar]

224. Quayle A J, Wilson K B, Li S G, Kjeldsen-Kragh J, Oftung F, Shinnick T, Sioud M, Forre O, Capra J D, Natvig J B. Peptide recognition, T cell receptor usage and HLA restriction elements of human heat-shock protein (HSP) 60 and mycobacterial 65 kDa HSP-reactive T cell clones from rheumatoid synovial fluid. Eur J Immunol. 1992;22:1315–1322. [PubMed] [Google Scholar]

225. Ragno S, Colston M J, Lowrie D B, Winrow V R, Blake D R, Tascon R. Protection of rats from adjuvant arthritis by immunization with naked DNA encoding for mycobacterial heat shock protein 65. Arthritis Rheum. 1997;40:277–283. [PubMed] [Google Scholar]

226. Ragno S, Winrow V R, Mascagni P, Lucietto P, Di Pierro F, Morris C J, Blake D R. A synthetic 10-kD heat shock protein (hsp10) from Mycobacterium tuberculosis modulates adjuvant arthritis. Clin Exp Immunol. 1996;103:384–390. [PMC free article] [PubMed] [Google Scholar]

227. Rajagopalan S, Brenner M. Calnexin retains unassembled major histocompatibility complex class I free heavy chains in the endoplasmic reticulum. J Exp Med. 1994;180:407–412. [PMC free article] [PubMed] [Google Scholar]

228. Rajagopalan S, Xu Y, Brenner M B. Retention of unassembled compounds of integral membrane proteins by calnexin. Science. 1994;263:387–390. [PubMed] [Google Scholar]

229. Rambukkana A, Das P K, Witkamp L, Yong S, Meinardi M M, Bos J D. Antibodies to mycobacterial 65-kDa heat shock protein and other immunodominant antigens in patients with psoriasis. J Invest Dermatol. 1993;100:87–92. [PubMed] [Google Scholar]

230. Rammensee H G. Chemistry of peptides associated with MHC class I and class II molecules. Curr Opin Immunol. 1995;7:85–96. [PubMed] [Google Scholar]

231. Rammensee H G, Falk K, Rötzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol. 1993;11:213–244. [PubMed] [Google Scholar]

232. Reddehase M J, Rothbard J B, Koszinowski U H. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature. 1989;337:651–653. [PubMed] [Google Scholar]

233. Rees A, Scoging A, Mehlert A, Young D B, Ivanyi J. Specificity of proliferative response of human CD8 clones to mycobacterial antigens. Eur J Immunol. 1988;18:1881–1887. [PubMed] [Google Scholar]

234. Reimann J, Kaufmann S H E. Alternative antigen processing pathways for MHC-restricted epitope presentation in anti-infective immunity. Curr Opin Immunol. 1997;9:462–469. [PubMed] [Google Scholar]

235. Roman E, Moreno C. Synthetic peptides non-covalently bound to bacterial hsp70 elicit peptide-specific T-cell responses in vivo. Immunology. 1996;88:487–492. [PMC free article] [PubMed] [Google Scholar]

236. Roman E, Moreno C. Delayed-type hypersensitivity elicited by synthetic peptides complexed with Mycobacterium tuberculosis hsp70. Immunology. 1997;90:52–56. [PMC free article] [PubMed] [Google Scholar]

237. Roman E, Moreno C, Young D. Mapping of Hsp70-binding sites on protein antigens. Eur J Biochem. 1994;222:65–73. [PubMed] [Google Scholar]

238. Rosat J P, Schreyer M, Ohteki T, Waanders G A, MacDonald H R, Louis J A. Selective expansion of activated Vδ4+ T cells during experimental infection of mice with Leishmania major. Eur J Immunol. 1994;24:496–499. [PubMed] [Google Scholar]

239. Rothstein N M, Higashi G, Yates J, Rajan T V. Onchocerca volvulus heat shock protein 70 is a major immunogen in amicrofilaremic individuals from filariasis-endemic area. Mol Biochem Parasitol. 1989;33:229–236. [PubMed] [Google Scholar]

240. Rudolphi U, Rzepka R, Batsford S, Kaufmann S H E, von der Mark K, Peter H H, Melchers I. The B cell repertoire of patients with rheumatoid arthritis. II. Increased frequencies of IgG+ and IgA+ B cells specific for mycobacterial heat-shock protein 60 or human type II collagen in synovial fluid and tissue. Arthritis Rheum. 1997;40:1409–1419. [PubMed] [Google Scholar]

241. Russo D M, Armitage R J, Barral-Netto M, Barral A, Grabstein K H, Reed S G. Antigen-reactive γδ T cells in human leishmaniasis. J Immunol. 1993;151:3712–3718. [PubMed] [Google Scholar]

242. Salvetti M, Buttinelli C, Ristori G, Carbonari M, Cherchi M, Fiorelli M, Grasso M G, Toma L, Pozzilli C. T-lymphocyte reactivity to the recombinant mycobacterial 65- and 70-kDa heat shock proteins in multiple sclerosis. J Autoimmun. 1992;5:691–702. [PubMed] [Google Scholar]

243. Salvetti M, Ristori G, Buttinelli C, Fiori P, Falcone M, Britton W, Adams E, Paone G, Grasso M G, Pozzilli C. The immune response to mycobacterial 70-kDa heat shock proteins frequently involves autoreactive T cells and is quantitatively disregulated in multiple sclerosis. J Neuroimmunol. 1996;65:143–153. [PubMed] [Google Scholar]

244. Sant A, Miller J. MHC class II antigen processing: biology of invariant chain. Curr Opin Immunol. 1994;6:57–63. [PubMed] [Google Scholar]

245. Sato H, Miyta M, Kasukawa R. Expression of heat shock protein on lymphocytes in peripheral blood and synovial fluid from patients with rheumatoid arthritis. J Rheumatol. 1996;23:2027–2032. [PubMed] [Google Scholar]

246. Schaiff W, Hruska K, McCourt D, Green M, Schwartz B. HLA-DR associates with specific stress proteins and is retained in the endoplasmic reticulum in invariant chain negative cells. J Exp Med. 1992;176:657–666. [PMC free article] [PubMed] [Google Scholar]

247. Schett G, Metzler B, Mayr M, Amberger A, Niederwasser D, Gupta R S, Mizzen L, Xu Q, Wick G. Macrophage-lysis mediated by autoantibodies to heat shock protein 65/60. Atherosclerosis. 1997;128:27–38. [PubMed] [Google Scholar]

248. Schild H, Mavaddat N, Litzenberger C, Ehrich E W, Davis M M, Bluestone J A, Matis L, Draper R K, Chien Y H. The nature of major histocompatibility complex recognition by γδ T cells. Cell. 1994;76:29–37. [PubMed] [Google Scholar]

249. Schirmbeck R, Reimann J. Peptide transporter-independent stress protein-mediated endosomal processing of endogenous protein antigens for major histocompatibility complex class I presentation. Eur J Immunol. 1994;24:1478–1486. [PubMed] [Google Scholar]

250. Schoel B, Kaufmann S H E. The unique role of heat shock proteins in infections. In: van Eden W, Young D B, editors. Stress proteins in medicine. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 27–53. [Google Scholar]

251. Schoel B, Sprenger S, Kaufmann S H E. Phosphate is essential for stimulation of Vγ9 Vδ2 T lymphocytes by mycobacterial low molecular weight ligand. Eur J Immunol. 1994;24:1886–1892. [PubMed] [Google Scholar]

252. Schoel B, Zügel, Ruppert T, Kaufmann S H E. Elongated peptides, not the predicted nonapeptide stimulate a major histocompatibility complex class I-restricted cytotoxic T lymphocyte clone with specificity for a bacterial heat shock protein. Eur J Immunol. 1994;24:3161–3169. [PubMed] [Google Scholar]

253. Schönrich G, Kalinke U, Momburg F, Malissen M, Schmitt-Verhulst A-M, Malissen B, Hämmerling G J, Arnold B. Down-regulation of T cell receptors on self-reactive T cell as novel mechanism for extrathymic tolerance induction. Cell. 1991;65:293–304. [PubMed] [Google Scholar]

254. Schwartz R H. Acquisition of immunologic self-tolerance. Cell. 1989;57:1073–1081. [PubMed] [Google Scholar]

255. Selkirk M E, Denham D A, Partono F, Maizels R M. Heat shock cognate 70 is a prominent immunogen in Brugian filariasis. J Immunol. 1989;143:299–308. [PubMed] [Google Scholar]

256. Selmaj K, Brosnan C F, Raine C S. Colocalization of lymphocytes bearing γ/δ T-cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci USA. 1991;88:6452–6456. [PMC free article] [PubMed] [Google Scholar]

257. Shanafelt M C, Hindersson P, Soderberg C, Mensi N, Turck C W, Webb D, Yssel H, Peltz G. T cell and antibody reactivity with the Borrelia burgdorferi 60-kDa heat shock protein in lyme arthritis. J Immunol. 1991;146:3985–3992. [PubMed] [Google Scholar]

258. Shimada A, Kasatani T, Takei I, Maruyma T, Nomaguchi H, Ozawa Y, Ishii M, Kasuga A, Tashiro F, Miyazaki J, Yamamura K, Saruta T. Immune response to heat-shock protein correlates with induction of insulitis in I-E alpha transgenic NOD mice. Diabetes. 1996;45:165–169. [PubMed] [Google Scholar]

259. Shimonkevitz R, Colburn C, Burnham J A, Murray R S, Kotzin B L. Clonal expansion of activated gamma/delta T cells in recent-onset multiple sclerosis. Proc Natl Acad Sci USA. 1993;90:923–927. [PMC free article] [PubMed] [Google Scholar]

260. Shinnick T M. Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr Top Microbiol Immunol. 1991;167:145–160. [PubMed] [Google Scholar]

261. Shinnick T M, Vodkin M H, Williams J C. The Mycobacterium tuberculosis 65-kilodalton antigen is a heat shock protein which corresponds to common antigen and to the Escherichia coli GroEL protein. Infect Immun. 1988;56:446–451. [PMC free article] [PubMed] [Google Scholar]

262. Silva C L, Lowrie D B. A single mycobacterial protein (hsp65) expressed by a transgenic antigen-presenting cell vaccinates mice against tuberculosis. Immunology. 1994;82:244–248. [PMC free article] [PubMed] [Google Scholar]

263. Silva C L, Silva M F, Pietro R C, Lowrie D B. Protection against tuberculosis by passive transfer with T-cell clones recognizing mycobacterial heat shock protein 65. Immunology. 1994;83:341–346. [PMC free article] [PubMed] [Google Scholar]

264. Silva C L, Silva M F, Pietro R C, Lowrie D B. Characterization of T cells that confer a high degree of protective immunity against tuberculosis in mice after vaccination with tumor cells expressing mycobacterial hsp65. Infect Immun. 1996;64:2400–2407. [PMC free article] [PubMed] [Google Scholar]

265. Sioud M, Kjeldsen-Kragh J, Quayle A, Kalvenes C, Waalen K, Fovre O, Natvig J B. The γδ gene usage by freshly isolated T lymphocytes from synovial fluids in rheumatoid synovitis: a preliminary report. Scand J Immunol. 1990;31:415–421. [PubMed] [Google Scholar]

266. Soloski M J, DeCloux A, Aldrich C J, Forman J. Structural and functional characteristics of the class Ib molecule, Qa-1. Immunol Rev. 1995;147:67–90. [PubMed] [Google Scholar]

267. Srivastava P K. Peptide-binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation. Adv Cancer Res. 1993;62:153–177. [PubMed] [Google Scholar]

268. Srivastava P K, Udono H, Blachere N E, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics. 1994;39:93–98. [PubMed] [Google Scholar]

269. Stanford M R, Kasp E, Whiston E, Dumonde P C, Pervin K, Hasan A, Todryk S, Mizushima Y, Lehner T. Heat shock protein peptides reactive in patients with Behcet’s disease are uveitogenic in Lewis rats. Clin Exp Immunol. 1994;97:226–231. [PMC free article] [PubMed] [Google Scholar]

270. Stasiuk L M, Ghoraishian M, Elson C J, Thompson S J. Pristane-induced arthritis is CD4+ T-cell dependent. Immunology. 1997;90:81–86. [PMC free article] [PubMed] [Google Scholar]

271. Steinhoff U, Wand-Württenberger A, Bremerich A, Kaufmann S H E. Mycobacterium leprae renders Schwann cells and mononuclear phagocytes susceptible or resistant against killer cells. Infect Immun. 1991;59:684–688. [PMC free article] [PubMed] [Google Scholar]

272. Steinhoff U, Schoel B, Kaufmann S H E. Lysis of interferon-γ-activated Schwann cells by cross-reactive CD8 α/β T cells with specificity to the mycobacterial 65 kDa heat shock protein. Int Immunol. 1990;2:279–284. [PubMed] [Google Scholar]

273. Steinhoff U, Zügel U, Hengel H, Rösch R, Munk M E, Kaufmann S H E. Prevention of autoimmune lysis by T cells with specificity for a heat shock protein by anti-sense oligonucleotide treatment. Proc Natl Acad Sci USA. 1994;91:5085–5088. [PMC free article] [PubMed] [Google Scholar]

274. Steinhoff, U., and S. H. E. Kaufmann. 1997. Unpublished results.

275. Steinman L. Escape from “Horror Autotoxicus”. Pathogenesis and treatment of autoimmune disease. Cell. 1995;80:7–10. [PubMed] [Google Scholar]

276. Stevens T R, Winrow V R, Blake D R, Rampton D S. Circulating antibodies to heat-shock protein 60 in Crohn’s disease and ulcerative colitis. Clin Exp Immunol. 1992;90:271–274. [PMC free article] [PubMed] [Google Scholar]

277. Suto R, Srivastava P K. A mechanism of the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995;269:1585–1588. [PubMed] [Google Scholar]

278. Suzue K, Zhou X, Eisen H N, Young R A. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci USA. 1997;94:13146–13151. [PMC free article] [PubMed] [Google Scholar]

279. Suzuki C K, Bonifacino J S, Liu A Y, Davis M M, Klausner R D. Regulating the retention of T cell receptor alpha chain variants within the endoplasmic reticulum: Ca2+-dependent association with Bip. J Cell Biol. 1991;114:189–205. [PMC free article] [PubMed] [Google Scholar]

280. Szalay G, Ladel C H, Kaufmann S H E. Stimulation of protective CD8+ T lymphocytes by vaccination with nonliving bacteria. Proc Natl Acad Sci USA. 1995;92:12389–12392. [PMC free article] [PubMed] [Google Scholar]

281. Tamura Y, Peng P, Liu K, Daou M, Srivastava P K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science. 1997;278:117–120. [PubMed] [Google Scholar]

282. Tanaka Y, Morita C T, Tanaka Y H, Nieves E, Brenner M B, Bloom B R. Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature. 1995;375:155–158. [PubMed] [Google Scholar]

283. Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin R L, Brenner M B, Bloom B R, Morita C T. Nonpeptide ligands for human gamma delta T cells. Proc Natl Acad Sci USA. 1994;91:8175–8179. [PMC free article] [PubMed] [Google Scholar]

284. Tascon R E, Colston M J, Ragno S, Stavropoulos E, Gregory D, Lowrie D B. Vaccination against tuberculosis by DNA injection. Nat Med. 1996;2:888–892. [PubMed] [Google Scholar]

285. Theofilopoulos A N. The basis of autoimmunity. I. Mechanisms of abberant self-recognition. Immunol Today. 1995;16:90–98. [PubMed] [Google Scholar]

286. Thompson C B, Allison J P. The emerging role of CTLA-4 as an immune attenuator. Immunity. 1997;7:445–450. [PubMed] [Google Scholar]

287. Thompson S J, Rook G A W, Brealey R J, van der Zee R, Elson C J. Autoimmune reactions to heat-shock proteins in pristane-induced arthritis. Eur J Immunol. 1990;20:2479–2484. [PubMed] [Google Scholar]

288. Tisch R, Yang X-D, Singer S M, Liblau R S, Fugger L, McDevitt H O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993;366:72–75. [PubMed] [Google Scholar]

289. Tsuji M, Mombaerts P, Lefrancois L, Nussenzweig R S, Zavala F, Tonegawa S. γδ T cells contribute to immunity against the liver stages of malaria in αβ T-cell-deficient mice. Proc Natl Acad Sci USA. 1994;91:345–349. [PMC free article] [PubMed] [Google Scholar]

290. Vanbuskirk A, Crump B L, Margoliash E, Pierce S K. A peptide binding protein having a role in antigen presentation is a member of the hsp70 heat shock family. J Exp Med. 1989;170:1799–1809. [PMC free article] [PubMed] [Google Scholar]

291. Van den Broek M F, Hagervorst E J M, van Bruggen M C J, van Eden W, van der Zee R, van den Berg W B. Protection against streptococcal cell wall-induced arthritis by pretreatment with the 65-kD mycobacterial heat shock protein. J Exp Med. 1989;170:449–466. [PMC free article] [PubMed] [Google Scholar]

292. Van Eden W. Heat-shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. Immunol Rev. 1991;121:1–27. [PubMed] [Google Scholar]

293. Van Eden W, Thole J E, Van der Zee R, Noordzij A, van Embden J D, Hensen E J, Cohen I R. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature. 1988;331:171–173. [PubMed] [Google Scholar]

294. Van Noort J M, Van Sechel A C, Bajramovic J J, el Ouagmiri M, Polman C H, Lassmann H, Ravid R. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature. 1995;375:798–801. [PubMed] [Google Scholar]

295. Van Roon J A, van Eden W, van Roy J L, Lafeber F J, Bijlsma J W. Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis. J Clin Invest. 1997;100:459–463. [PMC free article] [PubMed] [Google Scholar]

296. Von Boehmer H. Positive selection. Cell. 1994;76:219–228. [PubMed] [Google Scholar]

297. Wand-Württenberger A, Schoel B, Ivanyi J, Kaufmann S H E. Surface expression by mononuclear phagocytes of an epitope shared with mycobacterial heat shock protein 60. Eur J Immunol. 1991;21:1089–1092. [PubMed] [Google Scholar]

298. Weiner H L, Friedman A, Miller A, Khoury S J, Al-Sabbagh A, Santos L, Sayegh M, Nussenblatt R B, Trentham D E, Hafler D A. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol. 1994;12:809–837. [PubMed] [Google Scholar]

299. Weintraub B C, Jackson M R, Hedrick S. γδ T cells can recognize nonclassical MHC in the absence of conventional antigenic peptides. J Immunol. 1994;153:3051–3058. [PubMed] [Google Scholar]

300. Weiss S, Bogen B. MHC class II-restricted presentation of intracellular antigen. Cell. 1991;64:767–776. [PubMed] [Google Scholar]

301. Welch W J. The mammalian stress response. Cell physiology and biochemistry of stress proteins. In: Morimoto R I, Tissières A, Georgopoulos C, editors. Stress proteins in biology and medicine. Cold Spring Harbor Press; 1990. pp. 223–277. [Google Scholar]

302. Williams D B, Watts T H. Molecular chaperones in antigen processing. Curr Opin Immunol. 1995;7:77–84. [PubMed] [Google Scholar]

303. Wucherpfennig K W, Newcombe J, Li H, Keddy C, Cuzner M L, Hafler D A. Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci USA. 1992;89:4588–4592. [PMC free article] [PubMed] [Google Scholar]

304. Xu Q, Wick G. Surface expression of heat shock protein 60 on endothelial cells. Immunobiology. 1993;189:131–132. [Google Scholar]

305. Yang X D, Gasser J, Feige U. Prevention of adjuvant arthritis in rats by a nonapeptide from the 65-kD mycobacterial heat shock protein: specificity and mechanism. Clin Exp Immunol. 1992;87:99–104. [PMC free article] [PubMed] [Google Scholar]

306. Yi Y, Zhong G, Brunham R C. Continuous B-cell epitopes in Chlamydia trachomatis heat shock protein 60. Infect Immun. 1993;61:1117–1120. [PMC free article] [PubMed] [Google Scholar]

307. Yokota S, Tsubaki K, Kuriyama T, Shimizu H, Ibe M, Mitsuda T, Aihara Y, Kosuge K, Nomaguchi H. Presence in Kawasaki disease of antibodies to mycobacterial heat shock protein hsp65 and autoantibodies to epitopes of human hsp65 cognate antigen. Immunol Immunopathol. 1993;2:163–170. [PubMed] [Google Scholar]

308. Young D B, Lathringa R B, Hendrix R W, Sweetser D, Young R A. Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci USA. 1988;85:4267–4270. [PMC free article] [PubMed] [Google Scholar]

309. Young R A. Stress proteins and immunology. Annu Rev Immunol. 1990;8:401–420. [PubMed] [Google Scholar]

310. Zügel U, Kaufmann S H E. Activation of CD8 T cells with specificity for mycobacterial heat shock protein 60 in Mycobacterium bovis bacillus Calmette-Guérin-vaccinated mice. Infect Immun. 1997;65:3947–3950. [PMC free article] [PubMed] [Google Scholar]

311. Zügel U, Schoel B, Yamamoto S, Hengel H, Morein B, Kaufmann S H E. Crossrecognition by CD8 TCR α/β CTL of peptides in the self and the mycobacterial hsp60 which share intermediate sequence homology. Eur J Immunol. 1995;25:451–458. [PubMed] [Google Scholar]