Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas - PubMed (original) (raw)
Comparative Study
doi: 10.4161/cbt.4.9.2165. Epub 2005 Sep 9.
Affiliations
- PMID: 16251803
- DOI: 10.4161/cbt.4.9.2165
Free article
Comparative Study
Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas
Amanda Pfaff Smith et al. Cancer Biol Ther. 2005 Sep.
Free article
Abstract
Over the past two decades, several known genes have been shown to govern important functions in the development of primary and metastatic melanomas. However, from this limited number of genes, it is not possible to establish detailed molecular profiles for the early and advanced stages of melanoma development. To gain insights into the genetic profile of every stage of the melanoma progression pathway, and to determine to what extent these profiles are similar or distinct, we performed whole-genome expression profiling of tissue specimens representing normal skin, benign and atypical nevi, and early and advanced-stage melanomas. The results of this study provide first-time evidence that significant molecular changes occur distinctly at the border of/transition from melanoma in situ to primary melanoma, and that genes involved in mitotic cell cycle regulation and cell proliferation constitute the two leading categories of genes associated with these changes.
Similar articles
- Macroscopic spectral imaging and gene expression analysis of the early stages of melanoma.
Yang P, Farkas DL, Kirkwood JM, Abernethy JL, Edington HD, Becker D. Yang P, et al. Mol Med. 1999 Dec;5(12):785-94. Mol Med. 1999. PMID: 10666478 Free PMC article. - Telomerase activity and expression of apoptosis and anti-apoptosis regulators in the progression pathway of human melanoma.
Yang P, Becker D. Yang P, et al. Int J Oncol. 2000 Nov;17(5):913-9. doi: 10.3892/ijo.17.5.913. Int J Oncol. 2000. PMID: 11029492 - The gene expression signatures of melanoma progression.
Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL, Federman S, Miller JR 3rd, Allen RE, Singer MI, Leong SP, Ljung BM, Sagebiel RW, Kashani-Sabet M. Haqq C, et al. Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6092-7. doi: 10.1073/pnas.0501564102. Epub 2005 Apr 15. Proc Natl Acad Sci U S A. 2005. PMID: 15833814 Free PMC article. - Melanocytic nevi and tumor progression: perspectives concerning histomorphology, melanoma risk and molecular genetics.
Barnhill RL. Barnhill RL. Dermatology. 1993;187(2):86-90. doi: 10.1159/000247212. Dermatology. 1993. PMID: 8358111 Review. - Gene expression profiling of primary cutaneous melanoma.
Winnepenninckx V, Van den Oord JJ. Winnepenninckx V, et al. Verh K Acad Geneeskd Belg. 2007;69(1):23-45. Verh K Acad Geneeskd Belg. 2007. PMID: 17427873 Review.
Cited by
- Ataxia-telangiectasia group D complementing gene (ATDC) promotes lung cancer cell proliferation by activating NF-κB pathway.
Tang ZP, Dong QZ, Cui QZ, Papavassiliou P, Wang ED, Wang EH. Tang ZP, et al. PLoS One. 2013 Jun 12;8(6):e63676. doi: 10.1371/journal.pone.0063676. Print 2013. PLoS One. 2013. PMID: 23776433 Free PMC article. - Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor.
Bertrand-Vallery V, Belot N, Dieu M, Delaive E, Ninane N, Demazy C, Raes M, Salmon M, Poumay Y, Debacq-Chainiaux F, Toussaint O. Bertrand-Vallery V, et al. PLoS One. 2010 May 3;5(5):e10462. doi: 10.1371/journal.pone.0010462. PLoS One. 2010. PMID: 20454669 Free PMC article. - Prediction and Analysis of Skin Cancer Progression using Genomics Profiles of Patients.
Bhalla S, Kaur H, Dhall A, Raghava GPS. Bhalla S, et al. Sci Rep. 2019 Oct 31;9(1):15790. doi: 10.1038/s41598-019-52134-4. Sci Rep. 2019. PMID: 31673075 Free PMC article. - The Ectodysplasin receptor EDAR acts as a tumor suppressor in melanoma by conditionally inducing cell death.
Vial J, Royet A, Cassier P, Tortereau A, Dinvaut S, Maillet D, Gratadou-Hupon L, Creveaux M, Sadier A, Tondeur G, Léon S, Depaepe L, Pantalacci S, de la Fouchardière A, Micheau O, Dalle S, Laudet V, Mehlen P, Castets M. Vial J, et al. Cell Death Differ. 2019 Mar;26(3):443-454. doi: 10.1038/s41418-018-0128-1. Epub 2018 May 31. Cell Death Differ. 2019. PMID: 29855541 Free PMC article. - Arylamine N-acetyltransferase 1 protects against reactive oxygen species during glucose starvation: Role in the regulation of p53 stability.
Wang L, Minchin RF, Butcher NJ. Wang L, et al. PLoS One. 2018 Mar 8;13(3):e0193560. doi: 10.1371/journal.pone.0193560. eCollection 2018. PLoS One. 2018. PMID: 29518119 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous