Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells - PubMed (original) (raw)
. 2009 Aug 15;69(16):6565-72.
doi: 10.1158/0008-5472.CAN-09-0913. Epub 2009 Jul 28.
Affiliations
- PMID: 19638577
- DOI: 10.1158/0008-5472.CAN-09-0913
Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells
Chioniso Patience Masamha et al. Cancer Res. 2009.
Abstract
D- and E-type cyclins mediate G(1)-S phase cell cycle progression through activation of specific cyclin-dependent kinases (cdk) that phosphorylate the retinoblastoma protein (pRb), thereby alleviating repression of E2F-DP transactivation of S-phase genes. Cyclin D1 is often overexpressed in a variety of cancers and is associated with tumorigenesis and metastasis. Loss of cyclin D can cause G(1) arrest in some cells, but in other cellular contexts, the downstream cyclin E protein can substitute for cyclin D and facilitate G(1)-S progression. The objective of this study was to determine if a flexible heteroarotinoid anticancer compound, SHetA2, regulates cell cycle proteins and cell cycle progression in ovarian cancer cells. SHetA2 induced cyclin D1 phosphorylation, ubiquitination, and proteasomal degradation, causing G(1) arrest in ovarian cancer cells despite continued cyclin E2 expression and independently of p53 and glycogen synthase kinase-3beta. Cyclin D1 loss inhibited pRb S780 phosphorylation by cyclin D1-cdk4/6 and released p21 from cyclin D1-cdk4/6-p21 protein complexes to form cyclin E2-cdk2-p21 complexes, which repressed phosphorylation of pRb S612 by cyclin E2-cdk2 and ultimately E2F-DP transcriptional activity. G(1) arrest was prevented by overexpression or preventing degradation of cyclin D1 but not by restoration of pRb S612 phosphorylation through p21 knockdown. In conclusion, we show that loss of cyclin D1 in ovarian cancer cells treated with SHetA2 is sufficient to induce G(1) cell cycle arrest and this strategy is not impeded by the presence of cyclin E2. Therefore, cyclin D1 is a sufficient therapeutic target in ovarian cancer cells.
Similar articles
- Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3β-Cyclin D1 pathway.
Ong CS, Zhou J, Ong CN, Shen HM. Ong CS, et al. Cancer Lett. 2010 Dec 8;298(2):167-75. doi: 10.1016/j.canlet.2010.07.001. Epub 2010 Jul 23. Cancer Lett. 2010. PMID: 20655656 - Involvement of G1/S cyclins in estrogen-independent proliferation of estrogen receptor-positive breast cancer cells.
Bindels EM, Lallemand F, Balkenende A, Verwoerd D, Michalides R. Bindels EM, et al. Oncogene. 2002 Nov 21;21(53):8158-65. doi: 10.1038/sj.onc.1206012. Oncogene. 2002. PMID: 12444551 - Adhesion-regulated G1 cell cycle arrest in epithelial cells requires the downregulation of c-Myc.
Benaud CM, Dickson RB. Benaud CM, et al. Oncogene. 2001 Jul 27;20(33):4554-67. doi: 10.1038/sj.onc.1204609. Oncogene. 2001. PMID: 11494151 - GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy.
Takahashi-Yanaga F, Sasaguri T. Takahashi-Yanaga F, et al. Cell Signal. 2008 Apr;20(4):581-9. doi: 10.1016/j.cellsig.2007.10.018. Epub 2007 Oct 23. Cell Signal. 2008. PMID: 18023328 Review. - Cyclin proteolysis as a retinoid cancer prevention mechanism.
Dragnev KH, Freemantle SJ, Spinella MJ, Dmitrovsky E. Dragnev KH, et al. Ann N Y Acad Sci. 2001 Dec;952:13-22. doi: 10.1111/j.1749-6632.2001.tb02724.x. Ann N Y Acad Sci. 2001. PMID: 11795432 Review.
Cited by
- Expression and biological role of δ-catenin in human ovarian cancer.
Fang Y, Li Z, Wang X, Zhang S. Fang Y, et al. J Cancer Res Clin Oncol. 2012 Oct;138(10):1769-76. doi: 10.1007/s00432-012-1257-4. Epub 2012 Jun 15. J Cancer Res Clin Oncol. 2012. PMID: 22699932 - NF-kappaB is involved in SHetA2 circumvention of TNF-alpha resistance, but not induction of intrinsic apoptosis.
Chengedza S, Benbrook DM. Chengedza S, et al. Anticancer Drugs. 2010 Mar;21(3):297-305. doi: 10.1097/CAD.0b013e3283350e43. Anticancer Drugs. 2010. PMID: 20032777 Free PMC article. - Influence of the estrus cycle of the mouse on the disposition of SHetA2 after vaginal administration.
Mahjabeen S, Hatipoglu MK, Benbrook DM, Kosanke SD, Garcia-Contreras D, Garcia-Contreras L. Mahjabeen S, et al. Eur J Pharm Biopharm. 2018 Sep;130:272-280. doi: 10.1016/j.ejpb.2018.07.004. Epub 2018 Jul 4. Eur J Pharm Biopharm. 2018. PMID: 30064701 Free PMC article. - Sorting nexin 27 (SNX27) regulates the trafficking and activity of the glutamine transporter ASCT2.
Yang Z, Follett J, Kerr MC, Clairfeuille T, Chandra M, Collins BM, Teasdale RD. Yang Z, et al. J Biol Chem. 2018 May 4;293(18):6802-6811. doi: 10.1074/jbc.RA117.000735. Epub 2018 Mar 21. J Biol Chem. 2018. PMID: 29563155 Free PMC article. - Complementary Targeting of Rb Phosphorylation and Growth in Cervical Cancer Cell Cultures and a Xenograft Mouse Model by SHetA2 and Palbociclib.
Kennedy AL, Rai R, Isingizwe ZR, Zhao YD, Lightfoot SA, Benbrook DM. Kennedy AL, et al. Cancers (Basel). 2020 May 17;12(5):1269. doi: 10.3390/cancers12051269. Cancers (Basel). 2020. PMID: 32429557 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous