Transcriptional switching model for the regulation of tumorigenesis and metastasis by the ha-ras oncogene - transcriptional changes in the ha-ras tumor-suppressor gene lysyl oxidase - PubMed (original) (raw)
Transcriptional switching model for the regulation of tumorigenesis and metastasis by the ha-ras oncogene - transcriptional changes in the ha-ras tumor-suppressor gene lysyl oxidase
Z Su et al. Int J Oncol. 1995 Dec.
Abstract
A model system is described that allows an analysis of the molecular and biochemical changes associated with expression and suppression of the oncogenic and metastatic phenotype of cloned rat embryo fibroblast (CREF) cells. Ha-ras-transformed CREF cells are morphologically transformed, anchorage-independent and both tumorigenic and metastatic in athymic nude mice and syngeneic Fischer rats. Co-expression of the Ha-ras oncogene and Krev-1 tumor suppressor gene in CREF cells results in suppression of in vitro transformation. In contrast, Ha-ras/Krev-1 transformed CREF cells retain, with greatly extended latency periods, both tumorigenic and metastatic capabilities in athymic nude mice. The present study investigates changes in the Ha-ms suppressor gene, rrg (lysyl oxidase), during expression and suppression of the oncogenic phenotype in CREF cells. Nontumorigenic CREF cells and CREF cells transformed by the Ha-ras and Krev-1 gene that express a suppression in in vitro transformation contain elevated levels of lysyl oxidase mRNA and protein. In contrast, Ha-ms and Ha-ras/Krev-1 nude mouse tumor- and nude mouse lung metastasis-derived CREF cells contain reduced levels of lysyl oxidase mRNA and protein. Nuclear run-on assays indicate that suppression of lysyl oxidase expression in transformed subclones of CREF cells correlates with a reduction in transcription of the lysyl oxidase gene. Taken together, the current studies support a transcriptional switching model in which lysyl oxidase expression correlates directly with suppression of the Ka-ms-induced transformation phenotype and escape from oncogenic suppression correlates with a transcriptional silencing of the lysyl oxidase gene and decreased lysyl oxidase mRNA and protein.
Similar articles
- PEA3 sites within the progression elevated gene-3 (PEG-3) promoter and mitogen-activated protein kinase contribute to differential PEG-3 expression in Ha-ras and v-raf oncogene transformed rat embryo cells.
Su Z, Shi Y, Friedman R, Qiao L, McKinstry R, Hinman D, Dent P, Fisher PB. Su Z, et al. Nucleic Acids Res. 2001 Apr 15;29(8):1661-71. doi: 10.1093/nar/29.8.1661. Nucleic Acids Res. 2001. PMID: 11292838 Free PMC article. - Role of the Ha-ras (RasH) oncogene in mediating progression of the tumor cell phenotype (review).
Boylan JF, Jackson J, Steiner MR, Shih TY, Duigou GJ, Roszman T, Fisher PB, Zimmer SG. Boylan JF, et al. Anticancer Res. 1990 May-Jun;10(3):717-24. Anticancer Res. 1990. PMID: 2195986 Review. - Plasticity of CD44s expression during progression and metastasis of fibrosarcoma in an animal model system.
Culp LA, Kogerman P. Culp LA, et al. Front Biosci. 1998 Jul 1;3:d672-83. doi: 10.2741/a312. Front Biosci. 1998. PMID: 9634540 Review.
Cited by
- PEA3 sites within the progression elevated gene-3 (PEG-3) promoter and mitogen-activated protein kinase contribute to differential PEG-3 expression in Ha-ras and v-raf oncogene transformed rat embryo cells.
Su Z, Shi Y, Friedman R, Qiao L, McKinstry R, Hinman D, Dent P, Fisher PB. Su Z, et al. Nucleic Acids Res. 2001 Apr 15;29(8):1661-71. doi: 10.1093/nar/29.8.1661. Nucleic Acids Res. 2001. PMID: 11292838 Free PMC article. - Heparanase 2 expression inversely correlates with bladder carcinoma grade and stage.
Gross-Cohen M, Feld S, Naroditsky I, Nativ O, Ilan N, Vlodavsky I. Gross-Cohen M, et al. Oncotarget. 2016 Apr 19;7(16):22556-65. doi: 10.18632/oncotarget.8003. Oncotarget. 2016. PMID: 26968815 Free PMC article. - Integrated analysis of transcription factors and targets co-expression profiles reveals reduced correlation between transcription factors and target genes in cancer.
Liang J, Cui Y, Meng Y, Li X, Wang X, Liu W, Huang L, Du H. Liang J, et al. Funct Integr Genomics. 2019 Jan;19(1):191-204. doi: 10.1007/s10142-018-0636-6. Epub 2018 Sep 24. Funct Integr Genomics. 2019. PMID: 30251028 - Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene.
Su ZZ, Shi Y, Fisher PB. Su ZZ, et al. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9125-30. doi: 10.1073/pnas.94.17.9125. Proc Natl Acad Sci U S A. 1997. PMID: 9256446 Free PMC article. - PEG-3, a nontransforming cancer progression gene, is a positive regulator of cancer aggressiveness and angiogenesis.
Su ZZ, Goldstein NI, Jiang H, Wang MN, Duigou GJ, Young CS, Fisher PB. Su ZZ, et al. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15115-20. doi: 10.1073/pnas.96.26.15115. Proc Natl Acad Sci U S A. 1999. PMID: 10611347 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials