Bone metastasis in prostate cancer: emerging therapeutic strategies - PubMed (original) (raw)
Review
Bone metastasis in prostate cancer: emerging therapeutic strategies
Justin Sturge et al. Nat Rev Clin Oncol. 2011 Jun.
Erratum in
- Nat Rev Clin Oncol. 2011 Oct;8(10):568
Abstract
Metastatic bone disease (MBD) in advanced-stage cancer increases the risk of intractable bone pain, pathological skeletal fracture, spinal-cord compression and decreased survival. The disease manifestation course during MBD is largely driven by homotypic and heterotypic cellular interactions between invading tumor cells, osteoblasts and osteoclasts. The outcome is a sustained vicious cycle of bone matrix remodeling. Osteoclast-mediated bone degradation and subsequent bone loss are the hallmarks of secondary bone metastases from most solid tumors. An additional complication in prostate cancer is the predominance of osteosclerotic lesions typified by inappropriate bone production. Successful therapeutic strategies for the treatment of osteolytic MBD include the administration of intravenous bisphosphonates or subcutaneous inhibitors of receptor activator of nuclear factor κB ligand (RANKL). Inhibitors of SRC and cABL kinases and cathepsin K are under clinical investigation as potential anti-osteolytics. In contrast to the rapid progress being made in the development of anti-osteolytic therapies, the treatment of osteosclerotic MBD remains restricted to palliative radiotherapy for symptomatic solitary lesions and systemic taxane-based chemotherapy for widespread multiple lesions. This Review discusses the complex pathology of bone lesions in metastatic castration-resistant prostate cancer and focuses on new therapeutic strategies and targets that are emerging in preclinical studies.
Comment in
- Expanding horizons in metastatic prostate cancer treatment.
Fizazi K, Goessl C. Fizazi K, et al. Nat Rev Clin Oncol. 2011 Aug 30;8(10). doi: 10.1038/nrclinonc.2011.67-c1. Nat Rev Clin Oncol. 2011. PMID: 21878890 No abstract available.
Similar articles
- Targeting factors involved in bone remodeling as treatment strategies in prostate cancer bone metastasis.
Vessella RL, Corey E. Vessella RL, et al. Clin Cancer Res. 2006 Oct 15;12(20 Pt 2):6285s-6290s. doi: 10.1158/1078-0432.CCR-06-0813. Clin Cancer Res. 2006. PMID: 17062715 Review. - The role of osteoclastic activity in prostate cancer skeletal metastases.
Keller ET. Keller ET. Drugs Today (Barc). 2002 Feb;38(2):91-102. doi: 10.1358/dot.2002.38.2.820105. Drugs Today (Barc). 2002. PMID: 12532187 Review. - Natural history and treatment of bone complications in prostate cancer.
Saad F, Clarke N, Colombel M. Saad F, et al. Eur Urol. 2006 Mar;49(3):429-40. doi: 10.1016/j.eururo.2005.12.045. Epub 2006 Jan 6. Eur Urol. 2006. PMID: 16431012 Review. - More advantages in detecting bone and soft tissue metastases from prostate cancer using 18F-PSMA PET/CT.
Pianou NK, Stavrou PZ, Vlontzou E, Rondogianni P, Exarhos DN, Datseris IE. Pianou NK, et al. Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7. Hell J Nucl Med. 2019. PMID: 30843003 - Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer.
Futakuchi M, Fukamachi K, Suzui M. Futakuchi M, et al. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt B):206-211. doi: 10.1016/j.addr.2015.11.017. Epub 2015 Dec 4. Adv Drug Deliv Rev. 2016. PMID: 26656603 Review.
Cited by
- Calcium and phosphorus intake and prostate cancer risk: a 24-y follow-up study.
Wilson KM, Shui IM, Mucci LA, Giovannucci E. Wilson KM, et al. Am J Clin Nutr. 2015 Jan;101(1):173-83. doi: 10.3945/ajcn.114.088716. Epub 2014 Nov 19. Am J Clin Nutr. 2015. PMID: 25527761 Free PMC article. - The mammalian lectin galectin-8 induces RANKL expression, osteoclastogenesis, and bone mass reduction in mice.
Vinik Y, Shatz-Azoulay H, Vivanti A, Hever N, Levy Y, Karmona R, Brumfeld V, Baraghithy S, Attar-Lamdar M, Boura-Halfon S, Bab I, Zick Y. Vinik Y, et al. Elife. 2015 May 8;4:e05914. doi: 10.7554/eLife.05914. Elife. 2015. PMID: 25955862 Free PMC article. - WITHDRAWN: Cardamonin Inhibits Osteoclastogenesis Induced by Tumor Cells Through Interruption of the Signaling Pathway Activated by Receptor Activator of NF-κB Ligand.
Yadav VR, Prasad S, Reuter S, Sung B, Yamamoto N, Murakami A, Aggarwal BB. Yadav VR, et al. Cancer Lett. 2011 Dec 17:10.1016/j.canlet.2011.12.011. doi: 10.1016/j.canlet.2011.12.011. Online ahead of print. Cancer Lett. 2011. PMID: 22182452 Free PMC article. - Value of transrectal contrast-enhanced ultrasound with clinical indicators in the prediction of bone metastasis in prostate cancer.
Hong H, Liang D, Liu Q, Wu G, Sun R, Liu J, Wang F, Wang F. Hong H, et al. Quant Imaging Med Surg. 2022 Mar;12(3):1750-1761. doi: 10.21037/qims-21-365. Quant Imaging Med Surg. 2022. PMID: 35284288 Free PMC article. - Targeting SphK1/2 by SKI-178 inhibits prostate cancer cell growth.
Jin L, Zhu J, Yao L, Shen G, Xue BX, Tao W. Jin L, et al. Cell Death Dis. 2023 Aug 21;14(8):537. doi: 10.1038/s41419-023-06023-4. Cell Death Dis. 2023. PMID: 37604912 Free PMC article.
References
- Clin Cancer Res. 2006 Oct 15;12(20 Pt 2):6222s-6230s - PubMed
- J Clin Oncol. 2008 Jan 10;26(2):242-5 - PubMed
- BJU Int. 2009 Feb;103(4):464-9 - PubMed
- Cancer Res. 2009 Apr 15;69(8):3433-42 - PubMed
- Clin Cancer Res. 2003 Jan;9(1):295-306 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous