SMART-1 (original) (raw)
Home - Search - Browse - Alphabetic Index: 0- 1- 2- 3- 4- 5- 6- 7- 8- 9
A- B- C- D- E- F- G- H- I- J- K- L- M- N- O- P- Q- R- S- T- U- V- W- X- Y- Z
SMART-1
European lunar orbiter. Insat 3E. ESA's SMART-1 was to test miniaturization technology while exploring the Moon from orbit. Lunar orbiter, Technology Experiments satellite built by Swedish Space Corporation (SSC) for ESA, Europe. Launched 2003.
Status: Operational 2003. First Launch: 2003-09-27. Last Launch: 2003-09-27. Number: 1 . Gross mass: 350 kg (770 lb).
It was to be the first space probe ESA ever sent to the Moon and was to also be the first of ESA's missions to test advanced technology needed for future scientific planetary missions. It would use ion propulsion to maneuver from a geosynchronous transfer orbit to an elliptical lunar orbit over a sixteen month period.
SMART-1 was to test solar electric propulsion and other deep-space technologies, while performing scientific observations of the Moon. Among other investigations, it was to investigate the origin of the Moon and search for ice in the craters at the Moon's south pole. SMART was the abbreviation for Small Missions for Advanced Research and Technology.
Highlights:
- Spacecraft Prime contractor: Swedish Space Corporation, Solna, Sweden
- Launcher: Ariane-5 (SMART-1 was a secondary payload)
- Launch mass: 366.5 kilograms
- Dimensions: 1 cubic meter
- Instruments
- EPDP - To monitor the working of the propulsion system and its effects on the spacecraft - G. Noci, Laben Proel, Italy
- SPEDE - To also monitor the effect of the propulsion system and to investigate the electrical environment of the Earth-Moon space - W. Schmidt, FMI, Finland - -
- KaTE - To test more efficient communication techniques with Earth - D. Heuer, Astrium GmbH, Germany
- RSWAS - Was to use the KaTE and AMIE instruments to investigate the way the Moon wobbles - L. Iess, University of Rome, Italy
- OBAN - Software to allow the space probe to guide itself to the Moon - F. Ankersen, ESA
- AMIE - To test a miniaturized camera and take color images of the Moon surface - J. Josset, CSEM, Switzerland
- SIR - To search for ice and make a mineralogical mapping of the Moon - U. Keller, Max Planck Institute fuer Aeronomie, Germany
- D-CIXS - To investigate the composition of the Moon - M. Grande, Rutherford Appleton Laboratory, United Kingdom
- XSM - To calibrate the D-CIXS data and study solar X-ray emission - J. Huovenin, University of Helsinki Observatory, Finland
- Orbit: 16-month transfer orbit from Earth to the Moon. The final operational science orbit was a polar elliptical orbit, ranging from 300 kilometers to 10 000 kilometers above the Moon.
- Mission Operations Centre (MOC) - ESOC, Darmstadt, Germany
- Science and Technology Operations Coordination (STOC) - ESTEC, Noordwijk, The Netherlands
- Foreseen operational duration: 2-2.5 years
- Costs: 100 million euros at 2001 economic conditions (including launch, operations and part of the payload)
NASA NSSDC Master Catalog Description
The SMART-1 (Small Missions for Advanced Research in Technology 1) is a lunar orbiter designed to test spacecraft technologies for future missions. It entered initial lunar orbit on 13 November 2004. The primary technology being tested is a solar-powered ion drive. It will also carry an experimental deep-space telecommunications system and an instrument payload to monitor the ion drive and study the Moon. The primary scientific objectives of the mission are to return data on the geology, morphology, topography, mineralogy, geochemistry, and exospheric environment of the Moon in order to answer questions about planetary formation accretional processes, origin of the Earth-Moon system, the lunar near/far side dichotomy, long-term volcanic and tectonic activity, thermal and dynamical processes involved in lunar evolution, and water ice and external processes on the surface.
Spacecraft and Subsystems
SMART-1 is a box-shaped spacecraft roughly a meter on a side with two large solar panel wings spanning 14 meters extending from opposite sides. The launch mass, including fuel, is 366.5 kg, the mass at the time it reaches the Moon should be about 305 kg. A solar-electric propulsion system (a Stationary Plasma Hall-effect thruster, PPS-1350) uses xenon gas as a propellant by ionizing the xenon and accelerating and discharging the plasma from the spacecraft at high speed. Electrons are also released into the flow to maintain a neutral charge on the spacecraft. A thrust of 70 milliNewtons and a specific impulse of 1600 s is produced. 82 kg of supercritical xenon propellant will be carried aboard SMART-1 in a tank mounted in the center of the structure above the thruster. The spacecraft is three-axis stabilized using four skewed reaction wheels and eight 1-N hydrazine thrusters mounted on the corners of the spacecraft bus. Attitude knowledge is provided by a star tracker, sun sensor, and angular rate sensors.
1850 W of power is produced from an array of gallium-indium-phosphide gallium arsenide germanium (GaInP/GaAs/Ge) solar cells covering an active surface on the wings of about 10 square meters. Solar array power is regulated to 50 V in the power control and distribution unit and distributed via solid-state power controllers. Power is stored in five 130-Whr lithium ion battery cells. Roughly 75% of the power is used to run the propulsion system during flight. Thermal control is achieved through the use of radiators, heat pipes, multilayer insulation blankets, thermistor controlled heaters, and high emissivity optical properties. Communication takes place via a medium gain and two low gain S-band antennas as well as the antenna for the experimental Ka/X system. The medium gain antenna provides a telemetry rate of 65 kb/s. The two low gain antennas provide omin-directional ground coverage at 2 kb/s. The medium gain, Ka/X band, and one low gain antenna are mounted on one side panel of the spacecraft bus and the other low gain antenna is mounted on the opposite panel.
The spacecraft will carry a suite of science and technology instruments with a total mass of 19 kg. The science instruments include a pan-chromatic camera (AMIE) for lunar imaging, Langmuir probes mounted on booms (SPEDE) to measure the plasma environment, and radio science experiments (RSIS). Science instruments which are being tested as part of the technology verification are a miniaturized visible/near-infrared spectrometer (SIR) for lunar crustal studies, a miniature X-ray spectrometer for astronomy and lunar chemistry (D-CIXS), and an X-ray spectrometer to calibrate D-CIXS and to study the Sun (XSM). The Electric Propulsion Diagnostic package (EPDP) is a multi-sensor suite designed specifically to monitor the ion propulsion system, it also works in concert with the SPEDE to study the space plasma environment. The RSIS is also used to monitor the ion propulsion system. Finally an experimental telecommunication and tracking system, the Ka/X-band TTC (Telemetry and Telecommand) Experiment (KaTE) is included in the payload for technology assessment. The AMIE camera will also be used to support a test of an image-based On-Board Autonomous Navigation (OBAN) system. OBAN is designed to minimize the amount of ground intervention required for the mission.
Mission Profile
The SMART-1 spacecraft launched on 27 September 2003 from Kourou, French Guiana as an auxiliary passenger on an Ariane-5 Cyclade which launched two other large satellites as its primary payload. It was put into a geostationary transfer orbit, 742 x 36,016 km, inclined at 7 degrees to the equator. The spacecraft used its ion drive over a period of 14 months to elongate its Earth orbit and utilized three lunar resonance maneuvers in August, September, and October 2004 to minimize propellant use. Its final continuous thrust maneuver took place over 100 hours from 10 to 14 October 2004. Lunar orbit capture occurred on 13 November 2004 at a distance of 60,000 km from the lunar surface. The ion engine began firing in orbit at 05:24 UT (12:24 a.m. EST) on 15 November to start a 4.5 day period of thrust to lower the orbit. The first perilune took place on 15 November at 17:48 UTC (12:48 p.m. EST) at an altitude of about 5000 km above the lunar surface. The engine was then used to lower the initial 4962 x 51477 km altitude, 5 day, 9 hour period, 81 degree inclination orbit, putting SMART-1 into a 300 x 3000 km polar orbit. Lunar commissioning began in mid-January 2005 and lunar science operations in February 2005. The mission has been extended from its originally planned 6-month lifetime by a year, so it will now conduct mapping of the Moon's surface and evaluating the new technologies onboard from lunar orbit until August 2006. The xenon-ion engine was shut down in September 2005 after exhausting its fuel supply. It operated for almost 5000 hours and underwent 843 starts and stops. SMART-1 performed a controlled crash into the Moon at about 2 km/sec on 3 September 2006, at 5:42 UT in the mid-southern region of the near side of the Moon in Lacus Excellentiae (Lake of Excellence) at 34.4 S, 46.2 W. The total cost of the spacecraft is estimated at 100 million euros in 2001 economic conditions (~$90 million U.S.).
More at: SMART-1.
Family: Lunar Orbiters, Technology. Country: Europe. Engines: PPS-1350G. Launch Vehicles: Ariane 5, Ariane 5G. Launch Sites: Kourou, Kourou ELA3. Bibliography: 4067, 4068.
Photo Gallery
SMART-1Credit: Manufacturer Image |
---|
2003 September 27 - . Launch Site: Kourou. Launch Complex: Kourou ELA3. LV Family: Ariane 5. Launch Vehicle: Ariane 5G.
- SMART-1 - . Mass: 370 kg (810 lb). Nation: Europe. Agency: ESA. Class: Technology. Type: Space probe technology. Spacecraft: SMART-1. COSPAR: 2003-043x. Apogee: 35,803 km (22,246 mi). Perigee: 35,769 km (22,225 mi). Inclination: 0.0900 deg. Period: 1,436.06 min.
European Space Agency satellite which was to use ion drive and gravity assists to reach lunar orbit. The spacecraft made its third lunar resonance gravity assist on October 12, 2004. The continued gravitational effect of the Moon resulted in lunar capture on November 15, 2004,, when SMART-1 entered a 4962 x 51,477 km orbit around the Moon inclined at 81 degrees to the lunar equator.
2003 September 30 - .
2004 November 15 - .
2005 August 1 - .
2006 August 1 - .
Home - Search - Browse - Alphabetic Index: 0- 1- 2- 3- 4- 5- 6- 7- 8- 9
A- B- C- D- E- F- G- H- I- J- K- L- M- N- O- P- Q- R- S- T- U- V- W- X- Y- Z
© 1997-2019 Mark Wade - Contact
© / Conditions for Use