doi:10.1201/9781315139470> and Random Forest of Breiman (2001) <doi:10.1023/A:1010933404324> respectively.">

ODRF: Oblique Decision Random Forest for Classification and Regression (original) (raw)

The oblique decision tree (ODT) uses linear combinations of predictors as partitioning variables in a decision tree. Oblique Decision Random Forest (ODRF) is an ensemble of multiple ODTs generated by feature bagging. Oblique Decision Boosting Tree (ODBT) applies feature bagging during the training process of ODT-based boosting trees to ensemble multiple boosting trees. All three methods can be used for classification and regression, and ODT and ODRF serve as supplements to the classical CART of Breiman (1984) <doi:10.1201/9781315139470> and Random Forest of Breiman (2001) <doi:10.1023/A:1010933404324> respectively.

Version: 0.0.5
Depends: partykit, R (≥ 3.5.0)
Imports: doParallel, foreach, glue, graphics, grid, lifecycle, magrittr, nnet, parallel, Pursuit, Rcpp, rlang (≥ 0.4.11), stats, rpart, methods, glmnet
LinkingTo: Rcpp, RcppArmadillo, RcppEigen
Suggests: knitr, rmarkdown, spelling, testthat (≥ 3.0.0)
Published: 2025-04-25
DOI: 10.32614/CRAN.package.ODRF
Author: Yu Liu [aut, cre, cph], Yingcun Xia [aut]
Maintainer: Yu Liu
BugReports: https://github.com/liuyu-star/ODRF/issues
License: GPL (≥ 3)
URL: https://liuyu-star.github.io/ODRF/
NeedsCompilation: yes
Language: en-US
Citation: ODRF citation info
Materials: README, NEWS
CRAN checks: ODRF results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ODRFto link to this page.