doi:10.1177/09622802221134172>; Zhang, Stringer, Brown, and Stafford (2024) <doi:10.1080/10618600.2023.2289532>; Zhang, Brown, and Stafford (2023) <doi:10.48550/arXiv.2305.09914>; and Stringer, Brown, and Stafford (2021) <doi:10.1111/biom.13329>.">

BayesGP: Efficient Implementation of Gaussian Process in Bayesian Hierarchical Models (original) (raw)

Implements Bayesian hierarchical models with flexible Gaussian process priors, focusing on Extended Latent Gaussian Models and incorporating various Gaussian process priors for Bayesian smoothing. Computations leverage finite element approximations and adaptive quadrature for efficient inference. Methods are detailed in Zhang, Stringer, Brown, and Stafford (2023) <doi:10.1177/09622802221134172>; Zhang, Stringer, Brown, and Stafford (2024) <doi:10.1080/10618600.2023.2289532>; Zhang, Brown, and Stafford (2023) <doi:10.48550/arXiv.2305.09914>; and Stringer, Brown, and Stafford (2021) <doi:10.1111/biom.13329>.

Version: 0.1.3
Depends: R (≥ 3.6.0)
Imports: TMB (≥ 1.9.7), numDeriv, rstan, sfsmisc, Matrix (≥ 1.6.3), aghq (≥ 0.4.1), fda, tmbstan, LaplacesDemon, methods
LinkingTo: TMB (≥ 1.9.7), RcppEigen
Suggests: rmarkdown, knitr, survival, testthat (≥ 3.0.0)
Published: 2024-11-12
DOI: 10.32614/CRAN.package.BayesGP
Author: Ziang Zhang [aut, cre], Yongwei Lin [aut], Alex Stringer [aut], Patrick Brown [aut]
Maintainer: Ziang Zhang
License: GPL (≥ 3)
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: BayesGP results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BayesGPto link to this page.