doi:10.1080/19312458.2020.1832976>. LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove). It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.">

LSX: Semi-Supervised Algorithm for Document Scaling (original) (raw)

A word embeddings-based semi-supervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>. LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove). It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.

Version: 1.4.0
Depends: methods, R (≥ 3.5.0)
Imports: quanteda (≥ 2.0), quanteda.textstats, stringi, digest, Matrix, RSpectra, irlba, rsvd, rsparse, proxyC, stats, ggplot2, ggrepel, reshape2, locfit
Suggests: knitr, rmarkdown, testthat
Published: 2024-03-05
DOI: 10.32614/CRAN.package.LSX
Author: Kohei Watanabe [aut, cre, cph]
Maintainer: Kohei Watanabe <watanabe.kohei at gmail.com>
BugReports: https://github.com/koheiw/LSX/issues
License: GPL-3
URL: https://koheiw.github.io/LSX/
NeedsCompilation: no
Materials: NEWS
CRAN checks: LSX results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=LSXto link to this page.