LSX: Semi-Supervised Algorithm for Document Scaling (original) (raw)
A word embeddings-based semi-supervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>. LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove). It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.
Version: | 1.4.0 |
---|---|
Depends: | methods, R (≥ 3.5.0) |
Imports: | quanteda (≥ 2.0), quanteda.textstats, stringi, digest, Matrix, RSpectra, irlba, rsvd, rsparse, proxyC, stats, ggplot2, ggrepel, reshape2, locfit |
Suggests: | knitr, rmarkdown, testthat |
Published: | 2024-03-05 |
DOI: | 10.32614/CRAN.package.LSX |
Author: | Kohei Watanabe [aut, cre, cph] |
Maintainer: | Kohei Watanabe <watanabe.kohei at gmail.com> |
BugReports: | https://github.com/koheiw/LSX/issues |
License: | GPL-3 |
URL: | https://koheiw.github.io/LSX/ |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | LSX results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=LSXto link to this page.