doi:10.1007/s00521-017-3289-9>.">

WaveletGBM: Wavelet Based Gradient Boosting Method (original) (raw)

Wavelet decomposition method is very useful for modelling noisy time series data. Wavelet decomposition using 'haar' algorithm has been implemented to developed hybrid Wavelet GBM (Gradient Boosting Method) model for time series forecasting using algorithm by Anjoy and Paul (2017) <doi:10.1007/s00521-017-3289-9>.

Version: 0.1.0
Imports: caret, dplyr, caretForecast, Metrics, tseries, stats, wavelets, gbm
Published: 2023-04-07
DOI: 10.32614/CRAN.package.WaveletGBM
Author: Dr. Ranjit Kumar Paul [aut, cre], Dr. Md Yeasin [aut]
Maintainer: Dr. Ranjit Kumar Paul
License: GPL-3
NeedsCompilation: no
CRAN checks: WaveletGBM results

Documentation:

Reference manual: WaveletGBM.html , <WaveletGBM.pdf>

Downloads:

Package source: WaveletGBM_0.1.0.tar.gz
Windows binaries: r-devel: WaveletGBM_0.1.0.zip, r-release: WaveletGBM_0.1.0.zip, r-oldrel: WaveletGBM_0.1.0.zip
macOS binaries: r-release (arm64): WaveletGBM_0.1.0.tgz, r-oldrel (arm64): WaveletGBM_0.1.0.tgz, r-release (x86_64): WaveletGBM_0.1.0.tgz, r-oldrel (x86_64): WaveletGBM_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=WaveletGBMto link to this page.