bayesianVARs: MCMC Estimation of Bayesian Vectorautoregressions (original) (raw)
Efficient Markov Chain Monte Carlo (MCMC) algorithms for the fully Bayesian estimation of vectorautoregressions (VARs) featuring stochastic volatility (SV). Implements state-of-the-art shrinkage priors following Gruber & Kastner (2023) <doi:10.48550/arXiv.2206.04902>. Efficient equation-per-equation estimation following Kastner & Huber (2020) <doi:10.1002/for.2680> and Carrerio et al. (2021) <doi:10.1016/j.jeconom.2021.11.010>.
| Version: | 0.1.5 |
|---|---|
| Depends: | R (≥ 3.3.0) |
| Imports: | colorspace, factorstochvol (≥ 1.1.0), GIGrvg (≥ 0.7), graphics, MASS, mvtnorm, Rcpp (≥ 1.0.0), scales, stats, stochvol (≥ 3.0.3), utils |
| LinkingTo: | factorstochvol, Rcpp, RcppArmadillo, RcppProgress, stochvol |
| Suggests: | coda, knitr, rmarkdown, testthat (≥ 3.0.0) |
| Published: | 2024-11-13 |
| DOI: | 10.32614/CRAN.package.bayesianVARs |
| Author: | Luis Gruber |
| Maintainer: | Luis Gruber <Luis.Gruber at aau.at> |
| BugReports: | https://github.com/luisgruber/bayesianVARs/issues |
| License: | GPL (≥ 3) |
| URL: | https://github.com/luisgruber/bayesianVARs,https://luisgruber.github.io/bayesianVARs/ |
| NeedsCompilation: | yes |
| Materials: | README, NEWS |
| In views: | Bayesian, TimeSeries |
| CRAN checks: | bayesianVARs results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=bayesianVARsto link to this page.