doi:10.1080/10618600.2022.2110883> to identify the optimal estimator from among a prespecified set of candidates.">

cvCovEst: Cross-Validated Covariance Matrix Estimation (original) (raw)

An efficient cross-validated approach for covariance matrix estimation, particularly useful in high-dimensional settings. This method relies upon the theory of high-dimensional loss-based covariance matrix estimator selection developed by Boileau et al. (2022) <doi:10.1080/10618600.2022.2110883> to identify the optimal estimator from among a prespecified set of candidates.

Version: 1.2.2
Depends: R (≥ 4.0.0)
Imports: matrixStats, Matrix, stats, methods, origami, coop, Rdpack, rlang, dplyr, stringr, purrr, tibble, assertthat, RSpectra, ggplot2, ggpubr, RColorBrewer, RMTstat
Suggests: future, future.apply, MASS, testthat, knitr, rmarkdown, covr, spelling
Published: 2024-02-17
DOI: 10.32614/CRAN.package.cvCovEst
Author: Philippe Boileau ORCID iD [aut, cre, cph], Nima Hejazi ORCID iD [aut], Brian Collica ORCID iD [aut], Jamarcus Liu [ctb], Mark van der Laan ORCID iD [ctb, ths], Sandrine Dudoit ORCID iD [ctb, ths]
Maintainer: Philippe Boileau <philippe_boileau at berkeley.edu>
BugReports: https://github.com/PhilBoileau/cvCovEst/issues
License: MIT + file
URL: https://github.com/PhilBoileau/cvCovEst
NeedsCompilation: no
Language: en-US
Citation: cvCovEst citation info
Materials: README, NEWS
CRAN checks: cvCovEst results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=cvCovEstto link to this page.