doi:10.18637/jss.v114.i03>, provides a detailed introduction to the package.">

ebnm: Solve the Empirical Bayes Normal Means Problem (original) (raw)

Provides simple, fast, and stable functions to fit the normal means model using empirical Bayes. For available models and details, see function ebnm(). Our JSS article, Willwerscheid, Carbonetto, and Stephens (2025) <doi:10.18637/jss.v114.i03>, provides a detailed introduction to the package.

Version: 1.1-42
Depends: R (≥ 3.3.0)
Imports: stats, ashr, mixsqp, truncnorm, trust, deconvolveR, magrittr, rlang, dplyr, ggplot2
Suggests: testthat, REBayes, horseshoe, knitr, rmarkdown, cowplot, mcmc, numDeriv
Published: 2025-10-10
DOI: 10.32614/CRAN.package.ebnm
Author: Jason Willwerscheid [aut], Matthew Stephens [aut], Peter Carbonetto [aut, cre], Andrew Goldstein [ctb], Yusha Liu [ctb]
Maintainer: Peter Carbonetto <peter.carbonetto at gmail.com>
BugReports: https://github.com/stephenslab/ebnm/issues
License: GPL (≥ 3)
URL: https://github.com/stephenslab/ebnm
NeedsCompilation: no
Citation: ebnm citation info
Materials: README
CRAN checks: ebnm results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ebnmto link to this page.