fastFMM: Fast Functional Mixed Models using Fast Univariate Inference (original) (raw)
Implementation of the fast univariate inference approach (Cui et al. (2022) <doi:10.1080/10618600.2021.1950006>, Loewinger et al. (2024) <doi:10.7554/eLife.95802.2>) for fitting functional mixed models. User guides and Python package information can be found at <https://github.com/gloewing/photometry_FLMM>.
Version: | 0.4.0 |
---|---|
Imports: | lme4, parallel, cAIC4, magrittr, dplyr, mgcv, MASS, lsei, refund, stringr, Matrix, mvtnorm, progress, ggplot2, gridExtra, Rfast, lmeresampler, stats, methods |
Suggests: | knitr, rmarkdown, spelling |
Published: | 2025-03-13 |
DOI: | 10.32614/CRAN.package.fastFMM |
Author: | Erjia Cui [aut, cre], Gabriel Loewinger [aut], Al Xin [ctb] |
Maintainer: | Erjia Cui |
BugReports: | https://github.com/gloewing/fastFMM/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/gloewing/fastFMM |
NeedsCompilation: | no |
Language: | en-US |
Materials: | README, NEWS |
In views: | FunctionalData |
CRAN checks: | fastFMM results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=fastFMMto link to this page.