doi:10.1080/10618600.2021.1950006>, Loewinger et al. (2024) <doi:10.7554/eLife.95802.2>) for fitting functional mixed models. User guides and Python package information can be found at <https://github.com/gloewing/photometry_FLMM>.">

fastFMM: Fast Functional Mixed Models using Fast Univariate Inference (original) (raw)

Implementation of the fast univariate inference approach (Cui et al. (2022) <doi:10.1080/10618600.2021.1950006>, Loewinger et al. (2024) <doi:10.7554/eLife.95802.2>) for fitting functional mixed models. User guides and Python package information can be found at <https://github.com/gloewing/photometry_FLMM>.

Version: 0.4.0
Imports: lme4, parallel, cAIC4, magrittr, dplyr, mgcv, MASS, lsei, refund, stringr, Matrix, mvtnorm, progress, ggplot2, gridExtra, Rfast, lmeresampler, stats, methods
Suggests: knitr, rmarkdown, spelling
Published: 2025-03-13
DOI: 10.32614/CRAN.package.fastFMM
Author: Erjia Cui [aut, cre], Gabriel Loewinger [aut], Al Xin [ctb]
Maintainer: Erjia Cui
BugReports: https://github.com/gloewing/fastFMM/issues
License: GPL (≥ 3)
URL: https://github.com/gloewing/fastFMM
NeedsCompilation: no
Language: en-US
Materials: README, NEWS
In views: FunctionalData
CRAN checks: fastFMM results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=fastFMMto link to this page.