randomForestSRC: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC) (original) (raw)

Fast OpenMP parallel computing of Breiman's random forests for univariate, multivariate, unsupervised, survival, competing risks, class imbalanced classification and quantile regression. New Mahalanobis splitting for correlated outcomes. Extreme random forests and randomized splitting. Suite of imputation methods for missing data. Fast random forests using subsampling. Confidence regions and standard errors for variable importance. New improved holdout importance. Case-specific importance. Minimal depth variable importance. Visualize trees on your Safari or Google Chrome browser. Anonymous random forests for data privacy.

Version: 3.3.1
Depends: R (≥ 4.3.0)
Imports: parallel, data.tree, DiagrammeR
Suggests: survival, pec, prodlim, mlbench, interp, caret, imbalance, cluster, fst, data.table
Published: 2024-07-25
DOI: 10.32614/CRAN.package.randomForestSRC
Author: Hemant Ishwaran, Udaya B. Kogalur
Maintainer: Udaya B. Kogalur
BugReports: https://github.com/kogalur/randomForestSRC/issues/
License: GPL (≥ 3)
URL: https://www.randomforestsrc.org/ https://ishwaran.org/
NeedsCompilation: yes
Citation: randomForestSRC citation info
Materials:
In views: HighPerformanceComputing, MachineLearning, Survival
CRAN checks: randomForestSRC results

Documentation:

Downloads:

Reverse dependencies:

Reverse depends: ggRandomForests
Reverse imports: AutoScore, boostmtree, cjbart, CoxAIPW, glmnetr, precmed, ranktreeEnsemble, SIMMS, survcompare, survivalSL, SurvMetrics, tehtuner
Reverse suggests: ClassifyR, familiar, LTRCforests, MachineShop, mlrCPO, multipleOutcomes, PheCAP, riskRegression, survex, tram
Reverse enhances: pec

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=randomForestSRCto link to this page.