doi:10.1038/s41598-022-06500-4>).">

scISR: Single-Cell Imputation using Subspace Regression (original) (raw)

Provides an imputation pipeline for single-cell RNA sequencing data. The 'scISR' method uses a hypothesis-testing technique to identify zero-valued entries that are most likely affected by dropout events and estimates the dropout values using a subspace regression model (Tran et.al. (2022) <doi:10.1038/s41598-022-06500-4>).

Version: 0.1.1
Depends: R (≥ 3.4)
Imports: cluster, entropy, stats, utils, parallel, irlba, PINSPlus, matrixStats, markdown
Suggests: testthat, knitr, mclust
Published: 2022-06-30
DOI: 10.32614/CRAN.package.scISR
Author: Duc Tran [aut, cre], Bang Tran [aut], Hung Nguyen [aut], Tin Nguyen [fnd]
Maintainer: Duc Tran
BugReports: https://github.com/duct317/scISR/issues
License: LGPL-2 | LGPL-2.1 LGPL-3 [expanded from: LGPL]
URL: https://github.com/duct317/scISR
NeedsCompilation: no
Citation: scISR citation info
Materials: README
CRAN checks: scISR results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=scISRto link to this page.