OsStr in std::ffi - Rust (original) (raw)
Struct OsStr
1.0.0 · Source
pub struct OsStr { /* private fields */ }
Expand description
Borrowed reference to an OS string (see OsString).
This type represents a borrowed reference to a string in the operating system’s preferred representation.
&OsStr
is to OsString as &[str](../primitive.str.html "primitive str")
is to String: the former in each pair are borrowed references; the latter are owned strings.
See the module’s toplevel documentation about conversions for a discussion on the traits which OsStr
implements for conversions from/to native representations.
1.0.0 · Source
Coerces into an OsStr
slice.
§Examples
use std::ffi::OsStr;
let os_str = OsStr::new("foo");
1.74.0 · Source
Converts a slice of bytes to an OS string slice without checking that the string contains valid OsStr
-encoded data.
The byte encoding is an unspecified, platform-specific, self-synchronizing superset of UTF-8. By being a self-synchronizing superset of UTF-8, this encoding is also a superset of 7-bit ASCII.
See the module’s toplevel documentation about conversions for safe, cross-platform conversions from/to native representations.
§Safety
As the encoding is unspecified, callers must pass in bytes that originated as a mixture of validated UTF-8 and bytes from OsStr::as_encoded_bytes from within the same Rust version built for the same target platform. For example, reconstructing an OsStr
from bytes sent over the network or stored in a file will likely violate these safety rules.
Due to the encoding being self-synchronizing, the bytes from OsStr::as_encoded_bytes can be split either immediately before or immediately after any valid non-empty UTF-8 substring.
§Example
use std::ffi::OsStr;
let os_str = OsStr::new("Mary had a little lamb");
let bytes = os_str.as_encoded_bytes();
let words = bytes.split(|b| *b == b' ');
let words: Vec<&OsStr> = words.map(|word| {
// SAFETY:
// - Each `word` only contains content that originated from `OsStr::as_encoded_bytes`
// - Only split with ASCII whitespace which is a non-empty UTF-8 substring
unsafe { OsStr::from_encoded_bytes_unchecked(word) }
}).collect();
1.0.0 · Source
Yields a &[str](../primitive.str.html "primitive str")
slice if the OsStr
is valid Unicode.
This conversion may entail doing a check for UTF-8 validity.
§Examples
use std::ffi::OsStr;
let os_str = OsStr::new("foo");
assert_eq!(os_str.to_str(), Some("foo"));
1.0.0 · Source
Converts an OsStr
to a [Cow](../borrow/enum.Cow.html "enum std::borrow::Cow")<[str](../primitive.str.html "primitive str")>
.
Any non-UTF-8 sequences are replaced withU+FFFD REPLACEMENT CHARACTER.
§Examples
Calling to_string_lossy
on an OsStr
with invalid unicode:
// Note, due to differences in how Unix and Windows represent strings,
// we are forced to complicate this example, setting up example `OsStr`s
// with different source data and via different platform extensions.
// Understand that in reality you could end up with such example invalid
// sequences simply through collecting user command line arguments, for
// example.
#[cfg(unix)] {
use std::ffi::OsStr;
use std::os::unix::ffi::OsStrExt;
// Here, the values 0x66 and 0x6f correspond to 'f' and 'o'
// respectively. The value 0x80 is a lone continuation byte, invalid
// in a UTF-8 sequence.
let source = [0x66, 0x6f, 0x80, 0x6f];
let os_str = OsStr::from_bytes(&source[..]);
assert_eq!(os_str.to_string_lossy(), "fo�o");
}
#[cfg(windows)] {
use std::ffi::OsString;
use std::os::windows::prelude::*;
// Here the values 0x0066 and 0x006f correspond to 'f' and 'o'
// respectively. The value 0xD800 is a lone surrogate half, invalid
// in a UTF-16 sequence.
let source = [0x0066, 0x006f, 0xD800, 0x006f];
let os_string = OsString::from_wide(&source[..]);
let os_str = os_string.as_os_str();
assert_eq!(os_str.to_string_lossy(), "fo�o");
}
1.0.0 · Source
Copies the slice into an owned OsString.
§Examples
use std::ffi::{OsStr, OsString};
let os_str = OsStr::new("foo");
let os_string = os_str.to_os_string();
assert_eq!(os_string, OsString::from("foo"));
1.9.0 · Source
Checks whether the OsStr
is empty.
§Examples
use std::ffi::OsStr;
let os_str = OsStr::new("");
assert!(os_str.is_empty());
let os_str = OsStr::new("foo");
assert!(!os_str.is_empty());
1.9.0 · Source
Returns the length of this OsStr
.
Note that this does not return the number of bytes in the string in OS string form.
The length returned is that of the underlying storage used by OsStr
. As discussed in the OsString introduction, OsString and OsStr
store strings in a form best suited for cheap inter-conversion between native-platform and Rust string forms, which may differ significantly from both of them, including in storage size and encoding.
This number is simply useful for passing to other methods, likeOsString::with_capacity to avoid reallocations.
See the main OsString
documentation information about encoding and capacity units.
§Examples
use std::ffi::OsStr;
let os_str = OsStr::new("");
assert_eq!(os_str.len(), 0);
let os_str = OsStr::new("foo");
assert_eq!(os_str.len(), 3);
1.20.0 · Source
Converts a [Box](../boxed/struct.Box.html "struct std::boxed::Box")<[OsStr](struct.OsStr.html "struct std::ffi::OsStr")>
into an OsString without copying or allocating.
1.74.0 · Source
Converts an OS string slice to a byte slice. To convert the byte slice back into an OS string slice, use the OsStr::from_encoded_bytes_unchecked function.
The byte encoding is an unspecified, platform-specific, self-synchronizing superset of UTF-8. By being a self-synchronizing superset of UTF-8, this encoding is also a superset of 7-bit ASCII.
Note: As the encoding is unspecified, any sub-slice of bytes that is not valid UTF-8 should be treated as opaque and only comparable within the same Rust version built for the same target platform. For example, sending the slice over the network or storing it in a file will likely result in incompatible byte slices. See OsString for more encoding details and std::ffi for platform-specific, specified conversions.
🔬This is a nightly-only experimental API. (os_str_slice
#118485)
Takes a substring based on a range that corresponds to the return value ofOsStr::as_encoded_bytes.
The range’s start and end must lie on valid OsStr
boundaries. A valid OsStr
boundary is one of:
- The start of the string
- The end of the string
- Immediately before a valid non-empty UTF-8 substring
- Immediately after a valid non-empty UTF-8 substring
§Panics
Panics if range
does not lie on valid OsStr
boundaries or if it exceeds the end of the string.
§Example
#![feature(os_str_slice)]
use std::ffi::OsStr;
let os_str = OsStr::new("foo=bar");
let bytes = os_str.as_encoded_bytes();
if let Some(index) = bytes.iter().position(|b| *b == b'=') {
let key = os_str.slice_encoded_bytes(..index);
let value = os_str.slice_encoded_bytes(index + 1..);
assert_eq!(key, "foo");
assert_eq!(value, "bar");
}
1.53.0 · Source
Converts this string to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, useOsStr::to_ascii_lowercase.
§Examples
use std::ffi::OsString;
let mut s = OsString::from("GRÜßE, JÜRGEN ❤");
s.make_ascii_lowercase();
assert_eq!("grÜße, jÜrgen ❤", s);
1.53.0 · Source
Converts this string to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, useOsStr::to_ascii_uppercase.
§Examples
use std::ffi::OsString;
let mut s = OsString::from("Grüße, Jürgen ❤");
s.make_ascii_uppercase();
assert_eq!("GRüßE, JüRGEN ❤", s);
1.53.0 · Source
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use OsStr::make_ascii_lowercase.
§Examples
use std::ffi::OsString;
let s = OsString::from("Grüße, Jürgen ❤");
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
1.53.0 · Source
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use OsStr::make_ascii_uppercase.
§Examples
use std::ffi::OsString;
let s = OsString::from("Grüße, Jürgen ❤");
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
1.53.0 · Source
Checks if all characters in this string are within the ASCII range.
§Examples
use std::ffi::OsString;
let ascii = OsString::from("hello!\n");
let non_ascii = OsString::from("Grüße, Jürgen ❤");
assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());
1.53.0 · Source
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
, but without allocating and copying temporaries.
§Examples
use std::ffi::OsString;
assert!(OsString::from("Ferris").eq_ignore_ascii_case("FERRIS"));
assert!(OsString::from("Ferrös").eq_ignore_ascii_case("FERRöS"));
assert!(!OsString::from("Ferrös").eq_ignore_ascii_case("FERRÖS"));
🔬This is a nightly-only experimental API. (os_str_display
#120048)
Returns an object that implements Display for safely printing anOsStr that may contain non-Unicode data. This may perform lossy conversion, depending on the platform. If you would like an implementation which escapes the OsStr please use Debuginstead.
§Examples
#![feature(os_str_display)]
use std::ffi::OsStr;
let s = OsStr::new("Hello, world!");
println!("{}", s.display());
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
🔬This is a nightly-only experimental API. (clone_to_uninit
#126799)
Performs copy-assignment from self
to dst
. Read more
Extends a collection with the contents of an iterator. Read more
🔬This is a nightly-only experimental API. (extend_one
#72631)
Extends a collection with exactly one element.
🔬This is a nightly-only experimental API. (extend_one
#72631)
Reserves capacity in a collection for the given number of additional elements. Read more
Converts a Cow<'a, OsStr>
into a [Box](../boxed/struct.Box.html "struct std::boxed::Box")<[OsStr](struct.OsStr.html "struct std::ffi::OsStr")>
, by copying the contents if they are borrowed.
🔬This is a nightly-only experimental API. (slice_concat_trait
#27747)
The resulting type after concatenation
🔬This is a nightly-only experimental API. (slice_concat_trait
#27747)
Available on Unix only.
Available on WASI only.
Available on Windows only.
Re-encodes an OsStr
as a wide character sequence, i.e., potentially ill-formed UTF-16. Read more
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Tries to convert an &OsStr
to a &str
.
use std::ffi::OsStr;
let os_str = OsStr::new("foo");
let as_str = <&str>::try_from(os_str).unwrap();
assert_eq!(as_str, "foo");
The type returned in the event of a conversion error.