cacoshf, cacosh, cacoshl - cppreference.com (original) (raw)

Defined in header <complex.h>
float complex cacoshf( float complex z ); (1) (since C99)
double complex cacosh( double complex z ); (2) (since C99)
long double complex cacoshl( long double complex z ); (3) (since C99)
Defined in header <tgmath.h>
#define acosh( z ) (4) (since C99)

1-3) Computes complex arc hyperbolic cosine of a complex value z with branch cut at values less than 1 along the real axis.

  1. Type-generic macro: If z has type long double complex, cacoshl is called. if z has type double complex, cacosh is called, if z has type float complex, cacoshf is called. If z is real or integer, then the macro invokes the corresponding real function (acoshf, acosh, acoshl). If z is imaginary, then the macro invokes the corresponding complex number version and the return type is complex.

Contents

[edit] Parameters

[edit] Return value

The complex arc hyperbolic cosine of z in the interval [0; ∞) along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.

[edit] Error handling and special values

Errors are reported consistent with math_errhandling

If the implementation supports IEEE floating-point arithmetic,

[edit] Notes

Although the C standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".

Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.

The mathematical definition of the principal value of the inverse hyperbolic cosine is acosh z = ln(z + √z+1 √z-1)

For any z, acosh(z) = acos(z), or simply i acos(z) in the upper half of the complex plane.

[edit] Example

#include <stdio.h> #include <complex.h>   int main(void) { double complex z = cacosh(0.5); printf("cacosh(+0.5+0i) = %f%+fi\n", creal(z), cimag(z));   double complex z2 = conj(0.5); // or cacosh(CMPLX(0.5, -0.0)) in C11 printf("cacosh(+0.5-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2));   // in upper half-plane, acosh(z) = iacos(z) double complex z3 = casinh(1+I); printf("casinh(1+1i) = %f%+fi\n", creal(z3), cimag(z3)); double complex z4 = Icasin(1+I); printf("I*asin(1+1i) = %f%+fi\n", creal(z4), cimag(z4)); }

Output:

cacosh(+0.5+0i) = 0.000000-1.047198i cacosh(+0.5-0i) (the other side of the cut) = 0.500000-0.000000i casinh(1+1i) = 1.061275+0.666239i I*asin(1+1i) = -1.061275+0.666239i

[edit] References

[edit] See also

cacoscacosfcacosl(C99)(C99)(C99) computes the complex arc cosine (function) [edit]
casinhcasinhfcasinhl(C99)(C99)(C99) computes the complex arc hyperbolic sine (function) [edit]
catanhcatanhfcatanhl(C99)(C99)(C99) computes the complex arc hyperbolic tangent (function) [edit]
ccoshccoshfccoshl(C99)(C99)(C99) computes the complex hyperbolic cosine (function) [edit]
acoshacoshfacoshl(C99)(C99)(C99) computes inverse hyperbolic cosine (\({\small\operatorname{arcosh}{x} }\)arcosh(x)) (function) [edit]
C++ documentation for acosh