std::ranges::find_last, std::ranges::find_last_if, std::ranges::find_last_if_not - cppreference.com (original) (raw)

Defined in header
Call signature
(1)
template< std::forward_iterator I, std::sentinel_for<I> S, class T, class Proj = std::identity >requires std::indirect_binary_predicate <ranges::equal_to, std::projected<I, Proj>, const T*> constexpr ranges::subrange<I> find_last( I first, S last, const T& value, Proj proj = {} ); (since C++23) (until C++26)
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<I, Proj> >requires std::indirect_binary_predicate <ranges::equal_to, std::projected<I, Proj>, const T*> constexpr ranges::subrange<I> find_last( I first, S last, const T& value, Proj proj = {} ); (since C++26)
(2)
template< ranges::forward_range R, class T, class Proj = std::identity >requires std::indirect_binary_predicate <ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::borrowed_subrange_t<R> find_last( R&& r, const T& value, Proj proj = {} ); (since C++23) (until C++26)
template< ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj> >requires std::indirect_binary_predicate <ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::borrowed_subrange_t<R> find_last( R&& r, const T& value, Proj proj = {} ); (since C++26)
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred > constexpr ranges::subrange<I> find_last_if( I first, S last, Pred pred, Proj proj = {} ); (3) (since C++23)
template< ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected<ranges::iterator_t<R>, Proj>> Pred > constexpr ranges::borrowed_subrange_t<R> find_last_if( R&& r, Pred pred, Proj proj = {} ); (4) (since C++23)
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred > constexpr ranges::subrange<I> find_last_if_not( I first, S last, Pred pred, Proj proj = {} ); (5) (since C++23)
template< ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected<ranges::iterator_t<R>, Proj>> Pred > constexpr ranges::borrowed_subrange_t<R> find_last_if_not( R&& r, Pred pred, Proj proj = {} ); (6) (since C++23)

Returns the last element in the range [first, last) that satisfies specific criteria:

  1. find_last searches for an element equal to value.

  2. find_last_if searches for the last element in the range [first, last) for which predicate pred returns true.

  3. find_last_if_not searches for the last element in the range [first, last) for which predicate pred returns false.

2,4,6) Same as (1,3,5), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit] Parameters

first, last - the iterator-sentinel pair defining the range of elements to examine
r - the range of the elements to examine
value - value to compare the elements to
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

[edit] Return value

1,3,5) Let i be the last iterator in the range [first, last) for which E is true.

  1. E is bool(std::invoke(proj, *i) == value).

[edit] Complexity

At most last - first applications of the predicate and projection.

[edit] Notes

ranges::find_last, ranges::find_last_if, ranges::find_last_if_not have better efficiency on common implementations if I models bidirectional_iterator or (better) random_access_iterator.

Feature-test macro Value Std Feature
__cpp_lib_ranges_find_last 202207L (C++23) ranges::find_last,ranges::find_last_if,ranges::find_last_if_not
__cpp_lib_algorithm_default_value_type 202403L (C++26) List-initialization for algorithms (1,2)

[edit] Possible implementation

These implementations only show the slower algorithm used when I models forward_iterator.

find_last (1,2)
struct find_last_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate <ranges::equal_to, std::projected<I, Proj>, const T*> constexpr ranges::subrange<I> operator()(I first, S last, const T &value, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional<I> found; for (; first != last; ++first) if (std::invoke(proj, *first) == value) found = first;   if (!found) return {first, first};   return {*found, std::ranges::next(*found, last)}; }   template<ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate <ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, const T &value, Proj proj = {}) const { return this->operator()(ranges::begin(r), ranges::end(r), value, std::ref(proj)); } };   inline constexpr find_last_fn find_last;
find_last_if (3,4)
struct find_last_if_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr ranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional<I> found; for (; first != last; ++first) if (std::invoke(pred, std::invoke(proj, *first))) found = first;   if (!found) return {first, first};   return {*found, std::ranges::next(*found, last)}; }   template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected<ranges::iterator_t<R>, Proj>> Pred> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return this->operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } };   inline constexpr find_last_if_fn find_last_if;
find_last_if_not (5,6)
struct find_last_if_not_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr ranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional<I> found; for (; first != last; ++first) if (std::invoke(pred, std::invoke(proj, *first))) found = first;   if (!found) return {first, first};   return {*found, std::ranges::next(*found, last)}; }   template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected<ranges::iterator_t<R>, Proj>> Pred> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return this->operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } };   inline constexpr find_last_if_not_fn find_last_if_not;

[edit] Example

#include #include #include #include #include #include   int main() { namespace ranges = std::ranges;   constexpr static auto v = {1, 2, 3, 1, 2, 3, 1, 2};   { constexpr auto i1 = ranges::find_last(v.begin(), v.end(), 3); constexpr auto i2 = ranges::find_last(v, 3); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { constexpr auto i1 = ranges::find_last(v.begin(), v.end(), -3); constexpr auto i2 = ranges::find_last(v, -3); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); }   auto abs = [](int x) { return x < 0 ? -x : x; };   { auto pred = [](int x) { return x == 3; }; constexpr auto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { auto pred = [](int x) { return x == -3; }; constexpr auto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if(v, pred, abs); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); }   { auto pred = [](int x) { return x == 1 or x == 2; }; constexpr auto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { auto pred = [](int x) { return x == 1 or x == 2 or x == 3; }; constexpr auto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); }   using P = std::pair<std::string_view, int>; std::forward_list

list { {"one", 1}, {"two", 2}, {"three", 3}, {"one", 4}, {"two", 5}, {"three", 6}, }; auto cmp_one = [](const std::string_view &s) { return s == "one"; };   // find latest element that satisfy the comparator, and projecting pair::first const auto subrange = ranges::find_last_if(list, cmp_one, &P::first);   std::cout << "The found element and the tail after it are:\n"; for (P const& e : subrange) std::cout << '{' << std::quoted(e.first) << ", " << e.second << "} "; std::cout << '\n';   #if __cpp_lib_algorithm_default_value_type const auto i3 = ranges::find_last(list, {"three", 3}); // (2) C++26 #else const auto i3 = ranges::find_last(list, P{"three", 3}); // (2) C++23 #endif assert(i3.begin()->first == "three" && i3.begin()->second == 3); }

Output:

The found element and the tail after it are: {"one", 4} {"two", 5} {"three", 6}

[edit] See also

ranges::find_end(C++20) finds the last sequence of elements in a certain range(algorithm function object)[edit]
ranges::findranges::find_ifranges::find_if_not(C++20)(C++20)(C++20) finds the first element satisfying specific criteria(algorithm function object)[edit]
ranges::search(C++20) searches for the first occurrence of a range of elements(algorithm function object)[edit]
ranges::includes(C++20) returns true if one sequence is a subsequence of another(algorithm function object)[edit]
ranges::binary_search(C++20) determines if an element exists in a partially-ordered range(algorithm function object)[edit]
ranges::containsranges::contains_subrange(C++23)(C++23) checks if the range contains the given element or subrange(algorithm function object)[edit]