std::ranges::is_sorted_until - cppreference.com (original) (raw)

Defined in header
Call signature
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less > constexpr I is_sorted_until( I first, S last, Comp comp = {}, Proj proj = {} ); (1) (since C++20)
template< std::forward_range R, class Proj = std::identity, std::indirect_strict_weak_order< std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less > constexpr ranges::borrowed_iterator_t<R> is_sorted_until( R&& r, Comp comp = {}, Proj proj = {} ); (2) (since C++20)

Examines the range [first, last) and finds the largest range beginning at first in which the elements are sorted in non-descending order.

A sequence is sorted with respect to a comparator comp if for any iterator it pointing to the sequence and any non-negative integer n such that it + n is a valid iterator pointing to an element of the sequence, std::invoke(comp, std::invoke(proj, *(it + n)), std::invoke(proj, *it)) evaluates to false.

  1. Elements are compared using the given binary comparison function comp.

  2. Same as (1), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit] Parameters

first, last - the iterator-sentinel pair defining the range of elements to find its sorted upper bound
r - the range to find its sorted upper bound
comp - comparison function to apply to the projected elements
proj - projection to apply to the elements

[edit] Return value

The upper bound of the largest range beginning at first in which the elements are sorted in non-descending order. That is, the last iterator it for which range [first, it) is sorted.

[edit] Complexity

Linear in the distance between first and last.

[edit] Possible implementation

struct is_sorted_until_fn { template<std::forward_iterator I, std::sentinel_for S, class Proj = std::identity, std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less> constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const { if (first == last) return first;   for (auto next = first; ++next != last; first = next) if (std::invoke(comp, std::invoke(proj, *next), std::invoke(proj, *first))) return next;   return first; }   template<ranges::forward_range R, class Proj = std::identity, std::indirect_strict_weak_order< std::projected<ranges::iterator_t, Proj>> Comp = ranges::less> constexpr ranges::borrowed_iterator_t operator()(R&& r, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(comp), std::ref(proj)); } };   inline constexpr is_sorted_until_fn is_sorted_until;

[edit] Notes

ranges::is_sorted_until returns an iterator equal to last for empty ranges and ranges of length one.

[edit] Example

Possible output:

4 1 9 5 1 3  : 1 leading sorted element(s) 4 5 9 3 1 1  : 3 leading sorted element(s) 9 3 1 4 5 1  : 1 leading sorted element(s) 1 3 5 4 1 9  : 3 leading sorted element(s) 5 9 1 1 3 4  : 2 leading sorted element(s) 4 9 1 5 1 3  : 2 leading sorted element(s) 1 1 4 9 5 3  : 4 leading sorted element(s)

[edit] See also