std::conj(std::complex) - cppreference.com (original) (raw)

| Defined in header | | | | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------- | | (1) | | | | template< class T > std::complex<T> conj( const std::complex<T>& z ); | | (until C++20) | | template< class T > constexpr std::complex<T> conj( const std::complex<T>& z ); | | (since C++20) | | Additional overloads (since C++11) | | | | Defined in header | | | | (A) | | | | std::complex<float> conj( float f ); std::complex<double> conj( double f ); std::complex<long double> conj( long double f ); | | (until C++20) | | constexpr std::complex<float> conj( float f ); constexpr std::complex<double> conj( double f ); constexpr std::complex<long double> conj( long double f ); | | (since C++20) (until C++23) | | template< class FloatingPoint > constexpr std::complex<FloatingPoint> conj( FloatingPoint f ); | | (since C++23) | | (B) | | | | template< class Integer > constexpr std::complex<double> conj( Integer i ); | | (until C++20) | | template< class Integer > constexpr std::complex<double> conj( Integer i ); | | (since C++20) |

  1. Computes the complex conjugate of z by reversing the sign of the imaginary part.
A,B) Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component. (since C++11)

[edit] Parameters

z - complex value
f - floating-point value
i - integer value

[edit] Return value

  1. The complex conjugate of z.

[edit] Notes

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num:

[edit] Example

#include #include   int main() { std::complex z(1.0, 2.0); std::cout << "The conjugate of " << z << " is " << std::conj(z) << '\n' << "Their product is " << z * std::conj(z) << '\n'; }

Output:

The conjugate of (1,2) is (1,-2) Their product is (5,0)

[edit] See also