std::ceil, std::ceilf, std::ceill - cppreference.com (original) (raw)
Defined in header | ||
---|---|---|
(1) | ||
float ceil ( float num ); double ceil ( double num ); long double ceil ( long double num ); | (until C++23) | |
constexpr /*floating-point-type*/ ceil ( /*floating-point-type*/ num ); | (since C++23) | |
float ceilf( float num ); | (2) | (since C++11) (constexpr since C++23) |
long double ceill( long double num ); | (3) | (since C++11) (constexpr since C++23) |
SIMD overload (since C++26) | ||
Defined in header | ||
template< /*math-floating-point*/ V > constexpr /*deduced-simd-t*/<V> ceil ( const V& v_num ); | (S) | (since C++26) |
Additional overloads (since C++11) | ||
Defined in header | ||
template< class Integer > double ceil ( Integer num ); | (A) | (constexpr since C++23) |
1-3) Computes the least integer value not less than num. The library provides overloads of std::ceil
for all cv-unqualified floating-point types as the type of the parameter.(since C++23)
A) Additional overloads are provided for all integer types, which are treated as double. | (since C++11) |
---|
Contents
[edit] Parameters
num | - | floating point or integer value |
---|
[edit] Return value
If no errors occur, the smallest integer value not less than num, that is ⌈num⌉, is returned.
Return value
num
[edit] Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- The current rounding mode has no effect.
- If num is ±∞, it is returned unmodified.
- If num is ±0, it is returned, unmodified.
- If num is NaN, NaN is returned.
[edit] Notes
FE_INEXACT may be (but is not required to be) raised when rounding a non-integer finite value.
The largest representable floating-point values are exact integers in all standard floating-point formats, so this function never overflows on its own; however the result may overflow any integer type (including std::intmax_t), when stored in an integer variable. It is for this reason that the return type is floating-point not integral.
This function (for double argument) behaves as if (except for the freedom to not raise FE_INEXACT) implemented by the following code:
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::ceil(num) has the same effect as std::ceil(static_cast<double>(num)).
[edit] Example
#include #include int main() { std::cout << std::fixed << "ceil(+2.4) = " << std::ceil(+2.4) << '\n' << "ceil(-2.4) = " << std::ceil(-2.4) << '\n' << "ceil(-0.0) = " << std::ceil(-0.0) << '\n' << "ceil(-Inf) = " << std::ceil(-INFINITY) << '\n'; }
Output:
ceil(+2.4) = 3.000000 ceil(-2.4) = -2.000000 ceil(-0.0) = -0.000000 ceil(-Inf) = -inf
[edit] See also
floorfloorffloorl(C++11)(C++11) | nearest integer not greater than the given value (function) [edit] |
---|---|
trunctruncftruncl(C++11)(C++11)(C++11) | nearest integer not greater in magnitude than the given value (function) [edit] |
roundroundfroundllroundlroundflroundlllroundllroundfllroundl(C++11)(C++11)(C++11)(C++11)(C++11)(C++11)(C++11)(C++11)(C++11) | nearest integer, rounding away from zero in halfway cases (function) [edit] |
nearbyintnearbyintfnearbyintl(C++11)(C++11)(C++11) | nearest integer using current rounding mode (function) [edit] |
rintrintfrintllrintlrintflrintlllrintllrintfllrintl(C++11)(C++11)(C++11)(C++11)(C++11)(C++11)(C++11)(C++11)(C++11) | nearest integer using current rounding mode withexception if the result differs (function) [edit] |
C documentation for ceil |