std::div, std::ldiv, std::lldiv, std::imaxdiv - cppreference.com (original) (raw)

Defined in header
std::div_t div( int x, int y ); (1) (constexpr since C++23)
std::ldiv_t div( long x, long y ); (2) (constexpr since C++23)
std::lldiv_t div( long long x, long long y ); (3) (since C++11) (constexpr since C++23)
std::ldiv_t ldiv( long x, long y ); (4) (constexpr since C++23)
std::lldiv_t lldiv( long long x, long long y ); (5) (since C++11) (constexpr since C++23)
Defined in header
std::imaxdiv_t div( std::intmax_t x, std::intmax_t y ); (6) (since C++11) (constexpr since C++23)
std::imaxdiv_t imaxdiv( std::intmax_t x, std::intmax_t y ); (7) (since C++11) (constexpr since C++23)

Computes both the quotient and the remainder of the division of the numerator x by the denominator y.

The quotient is the algebraic quotient with any fractional part discarded (truncated towards zero). The remainder is such that quot * y + rem == x. (until C++11)
The quotient is the result of the expression x / y. The remainder is the result of the expression x % y. (since C++11)

Contents

[edit] Parameters

[edit] Return value

If both the remainder and the quotient can be represented as objects of the corresponding type (int, long, long long, std::intmax_t, respectively), returns both as an object of type std::div_t, std::ldiv_t, std::lldiv_t, std::imaxdiv_t defined as follows:

std::div_t

struct div_t { int quot; int rem; };

or

struct div_t { int rem; int quot; };

std::ldiv_t

struct ldiv_t { long quot; long rem; };

or

struct ldiv_t { long rem; long quot; };

std::lldiv_t

struct lldiv_t { long long quot; long long rem; };

or

struct lldiv_t { long long rem; long long quot; };

If either the remainder or the quotient cannot be represented, the behavior is undefined.

[edit] Notes

Until CWG issue 614 was resolved (N2757), the rounding direction of the quotient and the sign of the remainder in the built-in division and remainder operators was implementation-defined if either of the operands was negative, but it was well-defined in std::div.

On many platforms, a single CPU instruction obtains both the quotient and the remainder, and this function may leverage that, although compilers are generally able to merge nearby / and % where suitable.

[edit] Example

#include #include #include #include #include #include   std::string division_with_remainder_string(int dividend, int divisor) { auto dv = std::div(dividend, divisor); assert(dividend == divisor * dv.quot + dv.rem); assert(dv.quot == dividend / divisor); assert(dv.rem == dividend % divisor);   auto sign = [](int n){ return n > 0 ? 1 : n < 0 ? -1 : 0; }; assert((dv.rem == 0) or (sign(dv.rem) == sign(dividend)));   return (std::ostringstream() << std::showpos << dividend << " = " << divisor << " * (" << dv.quot << ") " << std::showpos << dv.rem).str(); }   std::string itoa(int n, int radix /[2..16]/) { std::string buf; std::div_t dv{}; dv.quot = n;   do { dv = std::div(dv.quot, radix); buf += "0123456789abcdef"[std::abs(dv.rem)]; // string literals are arrays } while (dv.quot);   if (n < 0) buf += '-';   return {buf.rbegin(), buf.rend()}; }   int main() { std::cout << division_with_remainder_string(369, 10) << '\n' << division_with_remainder_string(369, -10) << '\n' << division_with_remainder_string(-369, 10) << '\n' << division_with_remainder_string(-369, -10) << "\n\n";   std::cout << itoa(12345, 10) << '\n' << itoa(-12345, 10) << '\n' << itoa(42, 2) << '\n' << itoa(65535, 16) << '\n'; }

Output:

+369 = +10 * (+36) +9 +369 = -10 * (-36) +9 -369 = +10 * (-36) -9 -369 = -10 * (+36) -9   12345 -12345 101010 ffff

[edit] See also