std::sinh(std::valarray) - cppreference.com (original) (raw)
| | | | | ---------------------------------------------------------------- | | | | template< class T >valarray<T> sinh( const valarray<T>& va ); | | |
For each element in va computes hyperbolic sine of the value of the element.
Contents
[edit] Parameters
| va | - | value array to apply the operation to |
|---|
[edit] Return value
Value array containing hyperbolic sine of the values in va.
[edit] Notes
Unqualified function (sinh) is used to perform the computation. If such function is not available, std::sinh is used due to argument-dependent lookup.
The function can be implemented with the return type different from std::valarray. In this case, the replacement type has the following properties:
- All const member functions of std::valarray are provided.
- std::valarray, std::slice_array, std::gslice_array, std::mask_array and std::indirect_array can be constructed from the replacement type.
- For every function taking a const std::valarray<T>& except begin() and end()(since C++11), identical functions taking the replacement types shall be added;
- For every function taking two const std::valarray<T>& arguments, identical functions taking every combination of const std::valarray<T>& and replacement types shall be added.
- The return type does not add more than two levels of template nesting over the most deeply-nested argument type.
[edit] Possible implementation
template valarray sinh(const valarray& va) { valarray other = va; for (T& i : other) i = sinh(i); return other; // proxy object may be returned }
[edit] Example
#include #include #include #include #include template void show(char const* title, const std::valarray& va) { std::cout << title << " : " << std::right; for (T x : va) std::cout << std::fixed << x << ' '; std::cout << '\n'; } template void sinh_for(std::valarray const& z) { // Hyperbolic sine is sinh(z) = (eᶻ - e⁻ᶻ) / 2. const std::valarray sinh_z{std::sinh(z)}; const std::valarray e_z{std::exp(z)}; const std::valarray e_neg_z{std::exp(-z)}; const std::valarray sinh_def{(e_z - e_neg_z) / 2.0f}; show("n ", z); show("sinh(n) ", sinh_z); show("(eⁿ-e⁻ⁿ)/2", sinh_def); std::cout.put('\n'); } int main() { sinh_for(std::valarray{-.2f, -.1f, 0.f, .1f, .2f, INFINITY}); sinh_for(std::valarray<std::complex>{{-.2,-.1}, {.2,.1}}); }
Output:
n : -0.200000 -0.100000 0.000000 0.100000 0.200000 inf sinh(n) : -0.201336 -0.100167 0.000000 0.100167 0.201336 inf (eⁿ-e⁻ⁿ)/2 : -0.201336 -0.100167 0.000000 0.100167 0.201336 inf n : (-0.200000,-0.100000) (0.200000,0.100000) sinh(n) : (-0.200330,-0.101837) (0.200330,0.101837) (eⁿ-e⁻ⁿ)/2 : (-0.200330,-0.101837) (0.200330,0.101837)