pandas.DataFrame — pandas 0.16.2 documentation (original) (raw)

abs()

Return an object with absolute value taken.

add(other[, axis, level, fill_value])

Addition of dataframe and other, element-wise (binary operator add).

add_prefix(prefix)

Concatenate prefix string with panel items names.

add_suffix(suffix)

Concatenate suffix string with panel items names

align(other[, join, axis, level, copy, ...])

Align two object on their axes with the

all([axis, bool_only, skipna, level])

Return whether all elements are True over requested axis

any([axis, bool_only, skipna, level])

Return whether any element is True over requested axis

append(other[, ignore_index, verify_integrity])

Append rows of other to the end of this frame, returning a new object.

apply(func[, axis, broadcast, raw, reduce, args])

Applies function along input axis of DataFrame.

applymap(func)

Apply a function to a DataFrame that is intended to operate elementwise, i.e.

as_blocks()

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

as_matrix([columns])

Convert the frame to its Numpy-array representation.

asfreq(freq[, method, how, normalize])

Convert all TimeSeries inside to specified frequency using DateOffset objects.

assign(**kwargs)

Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.

astype(dtype[, copy, raise_on_error])

Cast object to input numpy.dtype

at_time(time[, asof])

Select values at particular time of day (e.g.

between_time(start_time, end_time[, ...])

Select values between particular times of the day (e.g., 9:00-9:30 AM)

bfill([axis, inplace, limit, downcast])

Synonym for NDFrame.fillna(method=’bfill’)

bool()

Return the bool of a single element PandasObject

boxplot([column, by, ax, fontsize, rot, ...])

Make a box plot from DataFrame column optionally grouped by some columns or

clip([lower, upper, out, axis])

Trim values at input threshold(s)

clip_lower(threshold[, axis])

Return copy of the input with values below given value(s) truncated

clip_upper(threshold[, axis])

Return copy of input with values above given value(s) truncated

combine(other, func[, fill_value, overwrite])

Add two DataFrame objects and do not propagate NaN values, so if for a

combineAdd(other)

Add two DataFrame objects and do not propagate

combineMult(other)

Multiply two DataFrame objects and do not propagate NaN values, so if

combine_first(other)

Combine two DataFrame objects and default to non-null values in frame calling the method.

compound([axis, skipna, level])

Return the compound percentage of the values for the requested axis

consolidate([inplace])

Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).

convert_objects([convert_dates, ...])

Attempt to infer better dtype for object columns

copy([deep])

Make a copy of this object

corr([method, min_periods])

Compute pairwise correlation of columns, excluding NA/null values

corrwith(other[, axis, drop])

Compute pairwise correlation between rows or columns of two DataFrame objects.

count([axis, level, numeric_only])

Return Series with number of non-NA/null observations over requested axis.

cov([min_periods])

Compute pairwise covariance of columns, excluding NA/null values

cummax([axis, dtype, out, skipna])

Return cumulative max over requested axis.

cummin([axis, dtype, out, skipna])

Return cumulative min over requested axis.

cumprod([axis, dtype, out, skipna])

Return cumulative prod over requested axis.

cumsum([axis, dtype, out, skipna])

Return cumulative sum over requested axis.

describe([percentile_width, percentiles, ...])

Generate various summary statistics, excluding NaN values.

diff([periods, axis])

1st discrete difference of object

div(other[, axis, level, fill_value])

Floating division of dataframe and other, element-wise (binary operator truediv).

divide(other[, axis, level, fill_value])

Floating division of dataframe and other, element-wise (binary operator truediv).

dot(other)

Matrix multiplication with DataFrame or Series objects

drop(labels[, axis, level, inplace, errors])

Return new object with labels in requested axis removed

drop_duplicates(*args, **kwargs)

Return DataFrame with duplicate rows removed, optionally only

dropna([axis, how, thresh, subset, inplace])

Return object with labels on given axis omitted where alternately any

duplicated(*args, **kwargs)

Return boolean Series denoting duplicate rows, optionally only

eq(other[, axis, level])

Wrapper for flexible comparison methods eq

equals(other)

Determines if two NDFrame objects contain the same elements.

eval(expr, **kwargs)

Evaluate an expression in the context of the calling DataFrame instance.

ffill([axis, inplace, limit, downcast])

Synonym for NDFrame.fillna(method=’ffill’)

fillna([value, method, axis, inplace, ...])

Fill NA/NaN values using the specified method

filter([items, like, regex, axis])

Restrict the info axis to set of items or wildcard

first(offset)

Convenience method for subsetting initial periods of time series data

first_valid_index()

Return label for first non-NA/null value

floordiv(other[, axis, level, fill_value])

Integer division of dataframe and other, element-wise (binary operator floordiv).

from_csv(path[, header, sep, index_col, ...])

Read delimited file into DataFrame

from_dict(data[, orient, dtype])

Construct DataFrame from dict of array-like or dicts

from_items(items[, columns, orient])

Convert (key, value) pairs to DataFrame.

from_records(data[, index, exclude, ...])

Convert structured or record ndarray to DataFrame

ge(other[, axis, level])

Wrapper for flexible comparison methods ge

get(key[, default])

Get item from object for given key (DataFrame column, Panel slice, etc.).

get_dtype_counts()

Return the counts of dtypes in this object

get_ftype_counts()

Return the counts of ftypes in this object

get_value(index, col[, takeable])

Quickly retrieve single value at passed column and index

get_values()

same as values (but handles sparseness conversions)

groupby([by, axis, level, as_index, sort, ...])

Group series using mapper (dict or key function, apply given function

gt(other[, axis, level])

Wrapper for flexible comparison methods gt

head([n])

Returns first n rows

hist(data[, column, by, grid, xlabelsize, ...])

Draw histogram of the DataFrame’s series using matplotlib / pylab.

icol(i)

idxmax([axis, skipna])

Return index of first occurrence of maximum over requested axis.

idxmin([axis, skipna])

Return index of first occurrence of minimum over requested axis.

iget_value(i, j)

info([verbose, buf, max_cols, memory_usage, ...])

Concise summary of a DataFrame.

insert(loc, column, value[, allow_duplicates])

Insert column into DataFrame at specified location.

interpolate([method, axis, limit, inplace, ...])

Interpolate values according to different methods.

irow(i[, copy])

isin(values)

Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

isnull()

Return a boolean same-sized object indicating if the values are null

iteritems()

Iterator over (column, series) pairs

iterkv(*args, **kwargs)

iteritems alias used to get around 2to3. Deprecated

iterrows()

Iterate over rows of DataFrame as (index, Series) pairs.

itertuples([index])

Iterate over rows of DataFrame as tuples, with index value

join(other[, on, how, lsuffix, rsuffix, sort])

Join columns with other DataFrame either on index or on a key column.

keys()

Get the ‘info axis’ (see Indexing for more)

kurt([axis, skipna, level, numeric_only])

Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0).

kurtosis([axis, skipna, level, numeric_only])

Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0).

last(offset)

Convenience method for subsetting final periods of time series data

last_valid_index()

Return label for last non-NA/null value

le(other[, axis, level])

Wrapper for flexible comparison methods le

load(path)

Deprecated.

lookup(row_labels, col_labels)

Label-based “fancy indexing” function for DataFrame.

lt(other[, axis, level])

Wrapper for flexible comparison methods lt

mad([axis, skipna, level])

Return the mean absolute deviation of the values for the requested axis

mask(cond[, other, inplace, axis, level, ...])

Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

max([axis, skipna, level, numeric_only])

This method returns the maximum of the values in the object.

mean([axis, skipna, level, numeric_only])

Return the mean of the values for the requested axis

median([axis, skipna, level, numeric_only])

Return the median of the values for the requested axis

memory_usage([index])

Memory usage of DataFrame columns.

merge(right[, how, on, left_on, right_on, ...])

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

min([axis, skipna, level, numeric_only])

This method returns the minimum of the values in the object.

mod(other[, axis, level, fill_value])

Modulo of dataframe and other, element-wise (binary operator mod).

mode([axis, numeric_only])

Gets the mode(s) of each element along the axis selected.

mul(other[, axis, level, fill_value])

Multiplication of dataframe and other, element-wise (binary operator mul).

multiply(other[, axis, level, fill_value])

Multiplication of dataframe and other, element-wise (binary operator mul).

ne(other[, axis, level])

Wrapper for flexible comparison methods ne

notnull()

Return a boolean same-sized object indicating if the values are

pct_change([periods, fill_method, limit, freq])

Percent change over given number of periods.

pipe(func, *args, **kwargs)

Apply func(self, *args, **kwargs)

pivot([index, columns, values])

Reshape data (produce a “pivot” table) based on column values.

pivot_table(data[, values, index, columns, ...])

Create a spreadsheet-style pivot table as a DataFrame.

plot(data[, x, y, kind, ax, subplots, ...])

Make plots of DataFrame using matplotlib / pylab.

pop(item)

Return item and drop from frame.

pow(other[, axis, level, fill_value])

Exponential power of dataframe and other, element-wise (binary operator pow).

prod([axis, skipna, level, numeric_only])

Return the product of the values for the requested axis

product([axis, skipna, level, numeric_only])

Return the product of the values for the requested axis

quantile([q, axis, numeric_only])

Return values at the given quantile over requested axis, a la numpy.percentile.

query(expr, **kwargs)

Query the columns of a frame with a boolean expression.

radd(other[, axis, level, fill_value])

Addition of dataframe and other, element-wise (binary operator radd).

rank([axis, numeric_only, method, ...])

Compute numerical data ranks (1 through n) along axis.

rdiv(other[, axis, level, fill_value])

Floating division of dataframe and other, element-wise (binary operator rtruediv).

reindex([index, columns])

Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.

reindex_axis(labels[, axis, method, level, ...])

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.

reindex_like(other[, method, copy, limit])

return an object with matching indicies to myself

rename([index, columns])

Alter axes input function or functions.

rename_axis(mapper[, axis, copy, inplace])

Alter index and / or columns using input function or functions.

reorder_levels(order[, axis])

Rearrange index levels using input order.

replace([to_replace, value, inplace, limit, ...])

Replace values given in ‘to_replace’ with ‘value’.

resample(rule[, how, axis, fill_method, ...])

Convenience method for frequency conversion and resampling of regular time-series data.

reset_index([level, drop, inplace, ...])

For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc.

rfloordiv(other[, axis, level, fill_value])

Integer division of dataframe and other, element-wise (binary operator rfloordiv).

rmod(other[, axis, level, fill_value])

Modulo of dataframe and other, element-wise (binary operator rmod).

rmul(other[, axis, level, fill_value])

Multiplication of dataframe and other, element-wise (binary operator rmul).

rpow(other[, axis, level, fill_value])

Exponential power of dataframe and other, element-wise (binary operator rpow).

rsub(other[, axis, level, fill_value])

Subtraction of dataframe and other, element-wise (binary operator rsub).

rtruediv(other[, axis, level, fill_value])

Floating division of dataframe and other, element-wise (binary operator rtruediv).

sample([n, frac, replace, weights, ...])

Returns a random sample of items from an axis of object.

save(path)

Deprecated.

select(crit[, axis])

Return data corresponding to axis labels matching criteria

select_dtypes([include, exclude])

Return a subset of a DataFrame including/excluding columns based on their dtype.

sem([axis, skipna, level, ddof, numeric_only])

Return unbiased standard error of the mean over requested axis.

set_axis(axis, labels)

public verson of axis assignment

set_index(keys[, drop, append, inplace, ...])

Set the DataFrame index (row labels) using one or more existing columns.

set_value(index, col, value[, takeable])

Put single value at passed column and index

shift([periods, freq, axis])

Shift index by desired number of periods with an optional time freq

skew([axis, skipna, level, numeric_only])

Return unbiased skew over requested axis

slice_shift([periods, axis])

Equivalent to shift without copying data.

sort([columns, axis, ascending, inplace, ...])

Sort DataFrame either by labels (along either axis) or by the values in

sort_index([axis, by, ascending, inplace, ...])

Sort DataFrame either by labels (along either axis) or by the values in

sortlevel([level, axis, ascending, inplace, ...])

Sort multilevel index by chosen axis and primary level.

squeeze()

squeeze length 1 dimensions

stack([level, dropna])

Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.

std([axis, skipna, level, ddof, numeric_only])

Return unbiased standard deviation over requested axis.

sub(other[, axis, level, fill_value])

Subtraction of dataframe and other, element-wise (binary operator sub).

subtract(other[, axis, level, fill_value])

Subtraction of dataframe and other, element-wise (binary operator sub).

sum([axis, skipna, level, numeric_only])

Return the sum of the values for the requested axis

swapaxes(axis1, axis2[, copy])

Interchange axes and swap values axes appropriately

swaplevel(i, j[, axis])

Swap levels i and j in a MultiIndex on a particular axis

tail([n])

Returns last n rows

take(indices[, axis, convert, is_copy])

Analogous to ndarray.take

to_clipboard([excel, sep])

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

to_csv([path_or_buf, sep, na_rep, ...])

Write DataFrame to a comma-separated values (csv) file

to_dense()

Return dense representation of NDFrame (as opposed to sparse)

to_dict(*args, **kwargs)

Convert DataFrame to dictionary.

to_excel(excel_writer[, sheet_name, na_rep, ...])

Write DataFrame to a excel sheet

to_gbq(destination_table[, project_id, ...])

Write a DataFrame to a Google BigQuery table.

to_hdf(path_or_buf, key, **kwargs)

activate the HDFStore

to_html([buf, columns, col_space, colSpace, ...])

Render a DataFrame as an HTML table.

to_json([path_or_buf, orient, date_format, ...])

Convert the object to a JSON string.

to_latex([buf, columns, col_space, ...])

Render a DataFrame to a tabular environment table.

to_msgpack([path_or_buf])

msgpack (serialize) object to input file path

to_panel()

Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.

to_period([freq, axis, copy])

Convert DataFrame from DatetimeIndex to PeriodIndex with desired

to_pickle(path)

Pickle (serialize) object to input file path

to_records([index, convert_datetime64])

Convert DataFrame to record array.

to_sparse([fill_value, kind])

Convert to SparseDataFrame

to_sql(name, con[, flavor, schema, ...])

Write records stored in a DataFrame to a SQL database.

to_stata(fname[, convert_dates, ...])

A class for writing Stata binary dta files from array-like objects

to_string([buf, columns, col_space, ...])

Render a DataFrame to a console-friendly tabular output.

to_timestamp([freq, how, axis, copy])

Cast to DatetimeIndex of timestamps, at beginning of period

to_wide(*args, **kwargs)

transpose()

Transpose index and columns

truediv(other[, axis, level, fill_value])

Floating division of dataframe and other, element-wise (binary operator truediv).

truncate([before, after, axis, copy])

Truncates a sorted NDFrame before and/or after some particular dates.

tshift([periods, freq, axis])

Shift the time index, using the index’s frequency if available

tz_convert(tz[, axis, level, copy])

Convert tz-aware axis to target time zone.

tz_localize(*args, **kwargs)

Localize tz-naive TimeSeries to target time zone

unstack([level])

Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.

update(other[, join, overwrite, ...])

Modify DataFrame in place using non-NA values from passed DataFrame.

var([axis, skipna, level, ddof, numeric_only])

Return unbiased variance over requested axis.

where(cond[, other, inplace, axis, level, ...])

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

xs(key[, axis, level, copy, drop_level])

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.