Kepler Sector - Geometry Calculator (original) (raw)
2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, Hexadecagon, N-gon, Polygon Ring
Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, 1/2 EL Triangle, Golden Triangle, Quadrilateral, Rectangle, Golden Rectangle, Rhombus, Equidiagonal Rhombus, Parallelogram, Kite, 60-90-120 Kite, Half Square Kite, Right Kite, Trapezoid, Right Trapezoid, Isosceles Trapezoid, Tri-equilateral Trapezoid, Obtuse Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Concave Quadrilateral, Crossed Rectangle, Antiparallelogram, House-Shape, Symmetric Pentagon, Diagonally Bisected Octagon, Cut Rectangle, Triangle Segment, Concave Pentagon, Concave Regular Pentagon, Stretched Pentagon, Straight Bisected Octagon, Stretched Hexagon, Symmetric Hexagon, Semi-regular Hexagon, Parallelogon, Concave Hexagon, Arrow-Hexagon, Rectangular Hexagon, L-Shape, Sharp Kink, T-Shape, Square Heptagon, Truncated Square, Stretched Octagon, Frame, Open Frame, Grid, Cross, X-Shape, H-Shape, Threestar, Fourstar, Pentagram, Hexagram, Unicursal Hexagram, Oktagram, Star of Lakshmi, Double Star Polygon, Polygram, The Hat, Polygon
Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Circular Central Segment, Round Corner, Circular Corner, Circle Tangent Arrow, Drop Shape, Crescent, Pointed Oval, Two Circles, Lancet Arch, Knoll, Elongated Semicircle, Annulus, Semi-Annulus, Annulus Sector, Annulus Segment, Annulus stripe, Curved Rectangle, Cash, Rounded Polygon, Rounded Rectangle, Ellipse, Semi-Ellipse, Elliptical Segment, Elliptical Sector, Kepler Sector, Elliptical Ring, Stadium, Half Stadium, Stadium Segment, Spiral, Log. Spiral, Reuleaux Triangle, Cycloid, Double Cycloid, Astroid, Hypocycloid, Cardioid, Epicycloid, Parabolic Segment, Heart, Tricorn, Pointed Semicircle, Interarc Triangle, Circular Arc Triangle, Interarc Quadrangle, Intercircle Quadrangle, Circular Arc Quadrangle, Circular Arc Polygon, Claw, Half Yin-Yang, Arbelos, Salinon, Bulge, Lune, Three Circles, Polycircle, Round-Edged Polygon, Rose, Gear, Oval, Egg-Profile, Lemniscate, Squircle, Circular Square, Digon, Spherical Triangle
3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron
Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Truncated Cuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron, Snub Cube, Rhombicosidodecahedron, Truncated Icosidodecahedron, Snub Dodecahedron
Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Triakis Octahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Hexakis Octahedron, Rhombic Triacontahedron, Triakis Icosahedron, Pentakis Dodecahedron, Pentagonal Icositetrahedron, Deltoidal Hexecontahedron, Hexakis Icosahedron, Pentagonal Hexecontahedron
Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Gyroelongated Pyramids, Bipyramids, Elongated Bipyramids, Gyroelongated Square Dipyramid, Gyrobifastigium, Disheptahedron, Snub Disphenoid, Sphenocorona, Disphenocingulum
Other Polyhedrons:
Cuboid, Square Pillar, Triangular Pyramid, Square Pyramid, Regular Pyramid, Pyramid, Square Frustum, Regular Frustum, Frustum, Bent Pyramid, Regular Bipyramid, Bipyramid, Bifrustum, Frustum-Pyramid, Ramp, Right Wedge, Wedge, Half Tetrahedron, Rhombohedron, Parallelepiped, Regular Prism, Prism, Oblique Prism, Anticube, Antiprism, Prismatoid, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Wedge-Cuboid, Half Cuboid, Skewed Cuboid, Ingot, Skewed Three-Edged Prism, Cut Cuboid, Truncated Cuboid, Obtuse Edged Cuboid, Elongated Dodecahedron, Truncated Rhombohedron, Obelisk, Bent Cuboid, Hollow Cuboid, Hollow Pyramid, Hollow Frustum, Star Pyramid, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron, Great Dodecahedron, Great Icosahedron
Round Forms:
Sphere, Hemisphere, Quarter Sphere, Spherical Corner, Cylinder, Cut Cylinder, Oblique Cylinder, Bent Cylinder, Elliptic Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Truncated Elliptic Cone, General Cone, General Truncated Cone, Bicone, Truncated Bicone, Pointed Pillar, Rounded Cone, Elongated Hemisphere, Drop, Spheroid, Ellipsoid, Semi-Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Central Segment, Double Calotte, Rounded Disc, Double Sphere, Spherical Wedge, Half Cylinder, Diagonally Halved Cylinder, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Flat End Cylinder, Half Cone, Conical Sector, Conical Wedge, Spherical Shell, Half Spherical Shell, Spherical Shell Cap, Cylindrical Shell, Cut Cylindrical Shell, Oblique Cylindrical Shell, Hollow Cone, Truncated Hollow Cone, Spherical Ring, Torus, Spindle Torus, Toroid, Torus Sector, Toroid Sector, Arch, Reuleaux-Tetrahedron, Capsule, Half Capsule, Capsule Segment, Double Point, Anticone, Truncated Anticone, Sphere-Cylinder, Lens, Concave Lens, Barrel, Egg Shape, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids, Solid of Revolution
Anzeige
Calculations at a Kepler sector. A Kepler sector is an elliptical sector that originates not from the center of the ellipse, but from one of its focal points. At the beginning of the 17th century, Johannes Kepler discovered the laws of celestial mechanics named after him. Kepler's first law states that the planets move in elliptical orbits around the Sun, which is located at one focal point of this ellipse. Kepler's second law states that a planet sweeps out equal areas in equal time along this orbit. These areas are called Kepler sectors.
Enter both semi-axes and both angles, round if necessary, and click Calculate. Please enter angles in degrees, here you can convert angle units. The angles in the following sketch have values of approximately α=45° and β=-68°.

A Kepler sector in an ellipse, the two focal points are marked on the semi-major axis.
Formulas:
ε = √ 1 - b²/a²
A = πab
A1 = ab/2 * | { 2 * arctan[ √(1-ε)/(1+ε) * tan(β/2) ] - ε * √1-ε² * sin(β) / [1+ε*cos(β)] } - { 2 * arctan[ √(1-ε)/(1+ε) * tan(α/2) ] - ε * √1-ε² * sin(α) / [1+ε*cos(α)] } |
A2 = A - A1
The semi axes have a one-dimensional unit (e.g. meter, or in this case rather astronomical unit), the areas have this unit squared (e.g. square meter or AU²). Numerical eccentricity is dimensionless. |...| is the absolute value.
The first sector area is the gray shaded area in the sketch. The second sector area is the remainder of the ellipse's surface without the first sector area. Adding both together gives the total area of the ellipse. Which of the two sector areas is the one that is needed depends, of course, on the context.
According to Kepler's second law, a planet must orbit faster the closer it is to the Sun (or its star). This is because as the distance decreases, a greater way must be covered in the same amount of time to sweep out the same area. By the way, the planets in our solar system have orbits around the Sun that are nearly circular and not as highly eccentric as in this sketch. However, planets with such eccentric orbits are certainly possible.
© Jumk.de Webprojects | Online Calculators
Anzeige