LFSMethods (original) (raw)
java.lang.Object
- weka.attributeSelection.LFSMethods
All Implemented Interfaces:
RevisionHandler
public class LFSMethods
extends java.lang.Object
implements RevisionHandler
Version: Revision:1.3Revision: 1.3 Revision:1.3
Author:
Martin Guetlein (martin.guetlein@gmail.com)
Nested Class Summary
Nested Classes
Modifier and Type Class and Description class LFSMethods.Link2 Class for a node in a linked list. class LFSMethods.LinkedList2 Class for handling a linked list. Constructor Summary
Constructors
Constructor and Description LFSMethods() empty constructor methods are not static because of access to inner class Link2 and LinkedList2 Method Summary
All Methods Instance Methods Concrete Methods
Modifier and Type Method and Description java.util.BitSet floatingForwardSearch(int cacheSize, java.util.BitSet startGroup, int[] ranking, int k, boolean incrementK, int maxStale,Instances data,SubsetEvaluator evaluator, boolean verbose) Performs linear floating forward selection ( the stopping criteria cannot be changed to a specific size value ) java.util.BitSet forwardSearch(int cacheSize, java.util.BitSet startGroup, int[] ranking, int k, boolean incrementK, int maxStale, int forceResultSize,Instances data,SubsetEvaluator evaluator, boolean verbose) Performs linear forward selection java.util.BitSet getBestGroup() java.util.BitSet getBestGroupOfSize(int size) double getBestMerit() int getNumEvalsCached() int getNumEvalsTotal() java.lang.String getRevision() Returns the revision string. int[] rankAttributes(Instances data,SubsetEvaluator evaluator, boolean verbose) * ### Methods inherited from class java.lang.Object `equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait`
Constructor Detail
* #### LFSMethods public LFSMethods() empty constructor methods are not static because of access to inner class Link2 and LinkedList2
Method Detail
* #### getBestGroup public java.util.BitSet getBestGroup() Returns: best group found by forwardSearch/floatingForwardSearch * #### getBestMerit public double getBestMerit() Returns: merit of best group found by forwardSearch/floatingForwardSearch * #### getBestGroupOfSize public java.util.BitSet getBestGroupOfSize(int size) Returns: best group of size found by forwardSearch * #### getNumEvalsCached public int getNumEvalsCached() Returns: number of cached / not performed evaluations * #### getNumEvalsTotal public int getNumEvalsTotal() Returns: number totally performed evaluations * #### rankAttributes public int[] rankAttributes([Instances](../../weka/core/Instances.html "class in weka.core") data, [SubsetEvaluator](../../weka/attributeSelection/SubsetEvaluator.html "interface in weka.attributeSelection") evaluator, boolean verbose) throws java.lang.Exception Returns: ranking (integer array) of attributes in data with evaluator (sorting is NOT stable!) Throws: `java.lang.Exception` * #### forwardSearch public java.util.BitSet forwardSearch(int cacheSize, java.util.BitSet startGroup, int[] ranking, int k, boolean incrementK, int maxStale, int forceResultSize, [Instances](../../weka/core/Instances.html "class in weka.core") data, [SubsetEvaluator](../../weka/attributeSelection/SubsetEvaluator.html "interface in weka.attributeSelection") evaluator, boolean verbose) throws java.lang.Exception Performs linear forward selection Parameters: `cacheSize` \- chacheSize (times number of instances) to store already evaluated sets `startGroup` \- start group for search (can be null) `ranking` \- ranking of attributes (as produced by rankAttributes), no ranking would be \[0,1,2,3,4..\] `k` \- number of top k attributes that are taken into account `incrementK` \- true -> fixed-set, false -> fixed-width `maxStale` \- number of times the search proceeds even though no improvement was found (1 = hill-climbing) `forceResultSize` \- stopping criteria changed from no-improvement (forceResultSize=-1) to subset-size `data` \- `evaluator` \- `verbose` \- Returns: BitSet, that cotains the best-group found Throws: `java.lang.Exception` * #### floatingForwardSearch public java.util.BitSet floatingForwardSearch(int cacheSize, java.util.BitSet startGroup, int[] ranking, int k, boolean incrementK, int maxStale, [Instances](../../weka/core/Instances.html "class in weka.core") data, [SubsetEvaluator](../../weka/attributeSelection/SubsetEvaluator.html "interface in weka.attributeSelection") evaluator, boolean verbose) throws java.lang.Exception Performs linear floating forward selection ( the stopping criteria cannot be changed to a specific size value ) Parameters: `cacheSize` \- chacheSize (times number of instances) to store already evaluated sets `startGroup` \- start group for search (can be null) `ranking` \- ranking of attributes (as produced by rankAttributes), no ranking would be \[0,1,2,3,4..\] `k` \- number of top k attributes that are taken into account `incrementK` \- true -> fixed-set, false -> fixed-width `maxStale` \- number of times the search proceeds even though no improvement was found (1 = hill-climbing) `data` \- `evaluator` \- `verbose` \- Returns: BitSet, that cotains the best-group found Throws: `java.lang.Exception` * #### getRevision public java.lang.String getRevision() Returns the revision string. Specified by: `[getRevision](../../weka/core/RevisionHandler.html#getRevision--)` in interface `[RevisionHandler](../../weka/core/RevisionHandler.html "interface in weka.core")` Returns: the revision