Define Custom Deep Learning Layer with Formatted Inputs - MATLAB & Simulink (original) (raw)
If Deep Learning Toolbox™ does not provide the layer you require for your task, then you can define your own custom layer using this example as a guide. For a list of built-in layers, see List of Deep Learning Layers.
To define a custom deep learning layer, you can use the template provided in this example, which takes you through these steps:
- Name the layer — Give the layer a name so that you can use it in MATLAB®.
- Declare the layer properties — Specify the properties of the layer, including learnable parameters and state parameters.
- Create the constructor function (optional) — Specify how to construct the layer and initialize its properties. If you do not specify a constructor function, then at creation, the software initializes the
Name
,Description
, andType
properties with[]
and sets the number of layer inputs and outputs to1
. - Create initialize function (optional) — Specify how to initialize the learnable and state parameters when the software initializes the network. If you do not specify an initialize function, then the software does not initialize parameters when it initializes the network.
- Create forward functions — Specify how data passes forward through the layer (forward propagation) at prediction time and at training time.
- Create reset state function (optional) — Specify how to reset state parameters.
- Create a backward function (optional) — Specify the derivatives of the loss with respect to the input data and the learnable parameters (backward propagation). If you do not specify a backward function, then the forward functions must support
dlarray
objects.
When you define the layer functions, you can use dlarray
objects.Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions using the"S"
, "T"
, "C"
, and"B"
labels, respectively. For unspecified and other dimensions, use the"U"
label. For dlarray
object functions that operate over particular dimensions, you can specify the dimension labels by formatting thedlarray
object directly, or by using the DataFormat
option.
Using formatted dlarray
objects in custom layers also allows you to define layers where the inputs and outputs have different formats, such as layers that permute, add, or remove dimensions. For example, you can define a layer that takes as input a mini-batch of images with the format "SSCB"
(spatial, spatial, channel, batch) and output a mini-batch of sequences with the format "CBT"
(channel, batch, time). Using formatted dlarray
objects also allows you to define layers that can operate on data with different input formats, for example, layers that support inputs with the formats "SSCB"
(spatial, spatial, channel, batch) and "CBT"
(channel, batch, time).
dlarray
objects also enable support for automatic differentiation. Consequently, if your forward functions fully support dlarray
objects, then defining the backward function is optional.
This example shows how to create a project and reshape layer, which is a layer commonly used in generative adversarial networks (GANs) that takes an array of noise with format "CB"
(channel, batch) and projects and reshapes it to a mini-batch of images with format "SSCB"
(spatial, spatial, channel, batch) using fully connected, reshape, and relabel operations.
Custom Layer Template
Copy the custom layer template into a new file in MATLAB. This template gives the structure of a layer class definition. It outlines:
- The optional
properties
blocks for the layer properties, learnable parameters, and state parameters. - The optional layer constructor function.
- The optional
initialize
function. - The
predict
function and the optionalforward
function. - The optional
resetState
function for layers with state properties. - The optional
backward
function.
classdef myLayer < nnet.layer.Layer % ... % & nnet.layer.Formattable ... % (Optional) % & nnet.layer.Acceleratable % (Optional)
properties
% (Optional) Layer properties.
% Declare layer properties here.
end
properties (Learnable)
% (Optional) Layer learnable parameters.
% Declare learnable parameters here.
end
properties (State)
% (Optional) Layer state parameters.
% Declare state parameters here.
end
properties (Learnable, State)
% (Optional) Nested dlnetwork objects with both learnable
% parameters and state parameters.
% Declare nested networks with learnable and state parameters here.
end
methods
function layer = myLayer()
% (Optional) Create a myLayer.
% This function must have the same name as the class.
% Define layer constructor function here.
end
function layer = initialize(layer,layout)
% (Optional) Initialize layer learnable and state parameters.
%
% Inputs:
% layer - Layer to initialize
% layout - Data layout, specified as a networkDataLayout
% object
%
% Outputs:
% layer - Initialized layer
%
% - For layers with multiple inputs, replace layout with
% layout1,...,layoutN, where N is the number of inputs.
% Define layer initialization function here.
end
function [Y,state] = predict(layer,X)
% Forward input data through the layer at prediction time and
% output the result and updated state.
%
% Inputs:
% layer - Layer to forward propagate through
% X - Input data
% Outputs:
% Y - Output of layer forward function
% state - (Optional) Updated layer state
%
% - For layers with multiple inputs, replace X with X1,...,XN,
% where N is the number of inputs.
% - For layers with multiple outputs, replace Y with
% Y1,...,YM, where M is the number of outputs.
% - For layers with multiple state parameters, replace state
% with state1,...,stateK, where K is the number of state
% parameters.
% Define layer predict function here.
end
function [Y,state,memory] = forward(layer,X)
% (Optional) Forward input data through the layer at training
% time and output the result, the updated state, and a memory
% value.
%
% Inputs:
% layer - Layer to forward propagate through
% X - Layer input data
% Outputs:
% Y - Output of layer forward function
% state - (Optional) Updated layer state
% memory - (Optional) Memory value for custom backward
% function
%
% - For layers with multiple inputs, replace X with X1,...,XN,
% where N is the number of inputs.
% - For layers with multiple outputs, replace Y with
% Y1,...,YM, where M is the number of outputs.
% - For layers with multiple state parameters, replace state
% with state1,...,stateK, where K is the number of state
% parameters.
% Define layer forward function here.
end
function layer = resetState(layer)
% (Optional) Reset layer state.
% Define reset state function here.
end
function [dLdX,dLdW,dLdSin] = backward(layer,X,Y,dLdY,dLdSout,memory)
% (Optional) Backward propagate the derivative of the loss
% function through the layer.
%
% Inputs:
% layer - Layer to backward propagate through
% X - Layer input data
% Y - Layer output data
% dLdY - Derivative of loss with respect to layer
% output
% dLdSout - (Optional) Derivative of loss with respect
% to state output
% memory - Memory value from forward function
% Outputs:
% dLdX - Derivative of loss with respect to layer input
% dLdW - (Optional) Derivative of loss with respect to
% learnable parameter
% dLdSin - (Optional) Derivative of loss with respect to
% state input
%
% - For layers with state parameters, the backward syntax must
% include both dLdSout and dLdSin, or neither.
% - For layers with multiple inputs, replace X and dLdX with
% X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
% the number of inputs.
% - For layers with multiple outputs, replace Y and dLdY with
% Y1,...,YM and dLdY,...,dLdYM, respectively, where M is the
% number of outputs.
% - For layers with multiple learnable parameters, replace
% dLdW with dLdW1,...,dLdWP, where P is the number of
% learnable parameters.
% - For layers with multiple state parameters, replace dLdSin
% and dLdSout with dLdSin1,...,dLdSinK and
% dLdSout1,...,dldSoutK, respectively, where K is the number
% of state parameters.
% Define layer backward function here.
end
end
end
Name Layer and Specify Superclasses
First, give the layer a name. In the first line of the class file, replace the existing name myLayer
withprojectAndReshapeLayer
.
classdef projectAndReshapeLayer < nnet.layer.Layer % ... % & nnet.layer.Formattable ... % (Optional) % & nnet.layer.Acceleratable % (Optional) ... end
If you do not specify a backward function, then the layer functions, by default, receive_unformatted_ dlarray
objects as input. To specify that the layer receives_formatted_ dlarray
objects as input and also outputs formatteddlarray
objects, also inherit from thennet.layer.Formattable
class when defining the custom layer.
Because a project and reshape layer outputs data with different dimensions as the input data, that is, it outputs data with added spatial dimensions, the layer must also inherit from nnet.layer.Formattable
. This enables the layer to receive and output formatted dlarray
objects.
Next, specify to inherit from both the nnet.layer.Layer
andnnet.layer.Formattable
superclasses. The layer functions also support acceleration, so also inherit from nnet.layer.Acceleratable
. For more information about accelerating custom layer functions, see Custom Layer Function Acceleration.
classdef projectAndReshapeLayer < nnet.layer.Layer ... & nnet.layer.Formattable ... & nnet.layer.Acceleratable ... end
Next, rename the myLayer
constructor function (the first function in the methods
section) so that it has the same name as the layer.
methods
function layer = projectAndReshapeLayer()
...
end
...
end
Save the Layer
Save the layer class file in a new file namedprojectAndReshapeLayer.m
. The file name must match the layer name. To use the layer, you must save the file in the current folder or in a folder on the MATLAB path.
Declare Properties and Learnable Parameters
Declare the layer properties in the properties
section and declare learnable parameters by listing them in the properties (Learnable)
section.
By default, custom layers have these properties. Do not declare these properties in theproperties
section.
Property | Description |
---|---|
Name | Layer name, specified as a character vector or string scalar. For Layer array input, the trainnet anddlnetwork functions automatically assign names to layers with the name "". |
Description | One-line description of the layer, specified as a string scalar or a character vector. This description appears when the layer is displayed in a Layer array.If you do not specify a layer description, then the software displays the layer class name. |
Type | Type of the layer, specified as a character vector or a string scalar. The value of Type appears when the layer is displayed in a Layer array.If you do not specify a layer type, then the software displays the layer class name. |
NumInputs | Number of inputs of the layer, specified as a positive integer. If you do not specify this value, then the software automatically setsNumInputs to the number of names inInputNames. The default value is 1. |
InputNames | Input names of the layer, specified as a cell array of character vectors. If you do not specify this value andNumInputs is greater than 1, then the software automatically sets InputNames to{'in1',...,'inN'}, where N is equal to NumInputs. The default value is{'in'}. |
NumOutputs | Number of outputs of the layer, specified as a positive integer. If you do not specify this value, then the software automatically setsNumOutputs to the number of names inOutputNames. The default value is 1. |
OutputNames | Output names of the layer, specified as a cell array of character vectors. If you do not specify this value andNumOutputs is greater than 1, then the software automatically sets OutputNames to{'out1',...,'outM'}, where M is equal to NumOutputs. The default value is{'out'}. |
If the layer has no other properties, then you can omit the properties
section.
Tip
If you are creating a layer with multiple inputs, then you must set either the NumInputs
or InputNames
properties in the layer constructor. If you are creating a layer with multiple outputs, then you must set either the NumOutputs
or OutputNames
properties in the layer constructor. For an example, see Define Custom Deep Learning Layer with Multiple Inputs.
A project and reshape layer requires an additional property that holds the layer output size. Specify a single property with name OutputSize
in theproperties
section.
properties
% Output size
OutputSize
end
A project and reshape layer has two learnable parameters: the weights and the biases of the fully connect operation. Declare these learnable parameter in theproperties (Learnable)
section and call the parametersWeights
and Bias
, respectively.
properties (Learnable)
% Layer learnable parameters
Weights
Bias
end
Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables required to create the layer as inputs to the constructor function.
The project and reshape layer constructor function requires one input argument that specifies the layer output size and one optional input argument that specifies the layer name.
In the constructor function projectAndReshapeLayer
, specify the required input argument named outputSize
and the optional arguments as name-value arguments with the name NameValueArgs
. Add a comment to the top of the function that explains the syntax of the function.
function layer = projectAndReshapeLayer(outputSize,NameValueArgs)
% layer = projectAndReshapeLayer(outputSize) creates a
% projectAndReshapeLayer object that projects and reshapes the
% input to the specified output size.
%
% layer = projectAndReshapeLayer(outputSize,Name=name) also
% specifies the layer name.
...
end
Parse Input Arguments
Parse the input arguments using an arguments
block. List the arguments in the same order as the function syntax and specify the default values. Then, extract the values from the NameValueArgs
input.
% Parse input arguments.
arguments
outputSize
NameValueArgs.Name = ''
end
name = NameValueArgs.Name;
Initialize Layer Properties
Initialize the layer properties in the constructor function. Replace the comment % Layer constructor function goes here
with code that initializes the layer properties. Do not initialize learnable or state parameters in the constructor function, initialize them in the initialize
function instead.
Set the Name
property to the input argumentname
.
% Set layer name.
layer.Name = name;
Give the layer a one-line description by setting theDescription
property of the layer. Set the description to describe the type of layer and its size.
% Set layer description.
layer.Description = "Project and reshape layer with output size " + join(string(outputSize));
Specify the type of the layer by setting the Type
property. The value of Type
appears when the layer is displayed in aLayer
array.
% Set layer type.
layer.Type = "Project and Reshape";
Set the layer property OutputSize
to the specified input value.
% Set output size.
layer.OutputSize = outputSize;
View the completed constructor function.
function layer = projectAndReshapeLayer(outputSize,NameValueArgs)
% layer = projectAndReshapeLayer(outputSize)
% creates a projectAndReshapeLayer object that projects and
% reshapes the input to the specified output size.
%
% layer = projectAndReshapeLayer(outputSize,Name=name)
% also specifies the layer name.
% Parse input arguments.
arguments
outputSize
NameValueArgs.Name = '';
end
name = NameValueArgs.Name;
% Set layer name.
layer.Name = name;
% Set layer description.
layer.Description = "Project and reshape layer with output size " + join(string(outputSize));
% Set layer type.
layer.Type = "Project and Reshape";
% Set output size.
layer.OutputSize = outputSize;
end
With this constructor function, the command projectAndReshapeLayer([4 4 512],Name="proj");
creates a project and reshape layer with name"proj"
that projects the input arrays to a batch of 512 4-by-4 images.
Create Initialize Function
Create the function that initializes the layer learnable and state parameters when the software initializes the network. Ensure that the function only initializes learnable and state parameters when the property is empty, otherwise the software can overwrite when you load the network from a MAT file.
To initialize the learnable parameter Weights
, generate a random array using Glorot initialization. To initialize the learnable parameterBias
, create a vector of zeros with the same number of channels as the input data. Only initialize the weights and bias when they are empty.
Because the size of the input data is unknown until the network is ready to use, you must create an initialize function that initializes the learnable and state parameters using networkDataLayout objects that the software provides to the function. Network data layout objects contain information about the sizes and formats of expected input data. Create an initialize function that uses the size and format information to initialize learnable and state parameters such that they have the correct size.
A project and reshape layer applies a fully connect operation to project the input to batch of images. Initialize the weights using Glorot initialization and initialize the bias with an array of zeros. The functions initializeGlorot
andinitializeZeros
are attached to the example Train Generative Adversarial Network (GAN) as supporting files. To access these functions, open this example as a live script. For more information about initializing learnable parameters for deep learning operations, see Initialize Learnable Parameters for Model Function.
function layer = initialize(layer,layout)
% layer = initialize(layer,layout) initializes the layer
% learnable parameters using the specified input layout.
% Layer output size.
outputSize = layer.OutputSize;
% Initialize fully connect weights.
if isempty(layer.Weights)
% Find number of channels.
idx = finddim(layout,"C");
numChannels = layout.Size(idx);
% Initialize using Glorot.
sz = [prod(outputSize) numChannels];
numOut = prod(outputSize);
numIn = numChannels;
layer.Weights = initializeGlorot(sz,numOut,numIn);
end
% Initialize fully connect bias.
if isempty(layer.Bias)
% Initialize with zeros.
layer.Bias = initializeZeros([prod(outputSize) 1]);
end
end
Create Forward Functions
Create the layer forward functions to use at prediction time and training time.
Create a function named predict
that propagates the data forward through the layer at prediction time and outputs the result.
The predict
function syntax depends on the type of layer.
Y = predict(layer,X)
forwards the input dataX
through the layer and outputs the resultY
, wherelayer
has a single input and a single output.[Y,state] = predict(layer,X)
also outputs the updated state parameterstate
, wherelayer
has a single state parameter.
You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state parameters:
- For layers with multiple inputs, replace
X
withX1,...,XN
, whereN
is the number of inputs. TheNumInputs
property must matchN
. - For layers with multiple outputs, replace
Y
withY1,...,YM
, whereM
is the number of outputs. TheNumOutputs
property must matchM
. - For layers with multiple state parameters, replace
state
withstate1,...,stateK
, whereK
is the number of state parameters.
Tip
If the number of inputs to the layer can vary, then use varargin
instead of X1,…,XN
. In this case, varargin
is a cell array of the inputs, where varargin{i}
corresponds to Xi
.
If the number of outputs can vary, then use varargout
instead of Y1,…,YM
. In this case, varargout
is a cell array of the outputs, where varargout{j}
corresponds to Yj
.
Tip
If the custom layer has a dlnetwork
object for a learnable parameter, then in the predict
function of the custom layer, use thepredict
function for the dlnetwork
. When you do so, the dlnetwork
object predict
function uses the appropriate layer operations for prediction. If the dlnetwork
has state parameters, then also return the network state.
Because a project and reshape layer has only one input and one output, the syntax forpredict
for a project and reshape layer is Y = predict(layer,X)
.
By default, the layer uses predict
as the forward function at training time. To use a different forward function at training time, or retain a value required for a custom backward function, you must also create a function namedforward
.
The dimensions of the inputs depend on the type of data and the output of the connected layers:
Layer Input | Example | |
---|---|---|
Shape | Data Format | |
2-D images | _h_-by-_w_-by-_c_-by-N numeric array, where h, w,c and N are the height, width, number of channels of the images, and number of observations, respectively. | "SSCB" |
3-D images | _h_-by-_w_-by-_d_-by-_c_-by-N numeric array, where h, w,d, c and N are the height, width, depth, number of channels of the images, and number of image observations, respectively. | "SSSCB" |
Vector sequences | _c_-by-N_-by-s matrix, where c is the number of features of the sequence, N is the number of sequence observations, and_s is the sequence length. | "CBT" |
2-D image sequences | _h_-by-_w_-by-_c_-by-N_-by-s array, where h, w, and_c correspond to the height, width, and number of channels of the image, respectively, N is the number of image sequence observations, and s is the sequence length. | "SSCBT" |
3-D image sequences | _h_-by-_w_-by-_d_-by-_c_-by-N_-by-s array, where h, w,d, and c correspond to the height, width, depth, and number of channels of the image, respectively,N is the number of image sequence observations, and_s is the sequence length. | "SSSCBT" |
Features | c_-by-N array, where_c is the number of features, and N is the number of observations. | "CB" |
For layers that output sequences, the layers can output sequences of any length or output data with no time dimension.
Because the custom layer inherits from the nnet.layer.Formattable
class, the layer receives formatted dlarray
objects with labels corresponding to the output of the previous layer.
The forward
function propagates the data forward through the layer at training time and also outputs a memory value.
The forward
function syntax depends on the type of layer:
Y = forward(layer,X)
forwards the input dataX
through the layer and outputs the resultY
, wherelayer
has a single input and a single output.[Y,state] = forward(layer,X)
also outputs the updated state parameterstate
, wherelayer
has a single state parameter.[__,memory] = forward(layer,X)
also returns a memory value for a custombackward
function using any of the previous syntaxes. If the layer has both a customforward
function and a custombackward
function, then the forward function must return a memory value.
You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state parameters:
- For layers with multiple inputs, replace
X
withX1,...,XN
, whereN
is the number of inputs. TheNumInputs
property must matchN
. - For layers with multiple outputs, replace
Y
withY1,...,YM
, whereM
is the number of outputs. TheNumOutputs
property must matchM
. - For layers with multiple state parameters, replace
state
withstate1,...,stateK
, whereK
is the number of state parameters.
Tip
If the number of inputs to the layer can vary, then use varargin
instead of X1,…,XN
. In this case, varargin
is a cell array of the inputs, where varargin{i}
corresponds to Xi
.
If the number of outputs can vary, then use varargout
instead of Y1,…,YM
. In this case, varargout
is a cell array of the outputs, where varargout{j}
corresponds to Yj
.
Tip
If the custom layer has a dlnetwork
object for a learnable parameter, then in the forward
function of the custom layer, use theforward
function of the dlnetwork
object. When you do so, the dlnetwork
object forward
function uses the appropriate layer operations for training.
The project and reshape operation consists of a three operations:
- Apply a fully connect operations with the learnable weights and biases.
- Reshape the output to the specified output size.
- Relabel the dimensions so that the output has format
'SSCB'
(spatial, spatial, channel, batch)
Implement this operation in the predict
function. The project and reshape layer does not require memory or a different forward function for training, so you can remove the forward
function from the class file. Add a comment to the top of the function that explains the syntaxes of the function.
function Y = predict(layer, X)
% Forward input data through the layer at prediction time and
% output the result.
%
% Inputs:
% layer - Layer to forward propagate through
% X - Input data, specified as a formatted dlarray
% with a 'C' and optionally a 'B' dimension.
% Outputs:
% Y - Output of layer forward function returned as
% a formatted dlarray with format 'SSCB'.
% Fully connect.
weights = layer.Weights;
bias = layer.Bias;
X = fullyconnect(X,weights,bias);
% Reshape.
outputSize = layer.OutputSize;
Y = reshape(X, outputSize(1), outputSize(2), outputSize(3), []);
% Relabel.
Y = dlarray(Y,'SSCB');
end
Tip
If you preallocate arrays using functions such aszeros
, then you must ensure that the data types of these arrays are consistent with the layer function inputs. To create an array of zeros of the same data type as another array, use the "like"
option of zeros
. For example, to initialize an array of zeros of size sz
with the same data type as the array X
, use Y = zeros(sz,"like",X)
.
Because the predict
function uses only functions that supportdlarray
objects, defining the backward
function is optional. For a list of functions that support dlarray
objects, see List of Functions with dlarray Support.
Completed Layer
View the completed layer class file.
classdef projectAndReshapeLayer < nnet.layer.Layer ... & nnet.layer.Formattable ... & nnet.layer.Acceleratable % Example project and reshape layer.
properties
% Output size
OutputSize
end
properties (Learnable)
% Layer learnable parameters
Weights
Bias
end
methods
function layer = projectAndReshapeLayer(outputSize,NameValueArgs)
% layer = projectAndReshapeLayer(outputSize)
% creates a projectAndReshapeLayer object that projects and
% reshapes the input to the specified output size.
%
% layer = projectAndReshapeLayer(outputSize,Name=name)
% also specifies the layer name.
% Parse input arguments.
arguments
outputSize
NameValueArgs.Name = '';
end
name = NameValueArgs.Name;
% Set layer name.
layer.Name = name;
% Set layer description.
layer.Description = "Project and reshape layer with output size " + join(string(outputSize));
% Set layer type.
layer.Type = "Project and Reshape";
% Set output size.
layer.OutputSize = outputSize;
end
function layer = initialize(layer,layout)
% layer = initialize(layer,layout) initializes the layer
% learnable parameters using the specified input layout.
% Layer output size.
outputSize = layer.OutputSize;
% Initialize fully connect weights.
if isempty(layer.Weights)
% Find number of channels.
idx = finddim(layout,"C");
numChannels = layout.Size(idx);
% Initialize using Glorot.
sz = [prod(outputSize) numChannels];
numOut = prod(outputSize);
numIn = numChannels;
layer.Weights = initializeGlorot(sz,numOut,numIn);
end
% Initialize fully connect bias.
if isempty(layer.Bias)
% Initialize with zeros.
layer.Bias = initializeZeros([prod(outputSize) 1]);
end
end
function Y = predict(layer, X)
% Forward input data through the layer at prediction time and
% output the result.
%
% Inputs:
% layer - Layer to forward propagate through
% X - Input data, specified as a formatted dlarray
% with a 'C' and optionally a 'B' dimension.
% Outputs:
% Y - Output of layer forward function returned as
% a formatted dlarray with format 'SSCB'.
% Fully connect.
weights = layer.Weights;
bias = layer.Bias;
X = fullyconnect(X,weights,bias);
% Reshape.
outputSize = layer.OutputSize;
Y = reshape(X, outputSize(1), outputSize(2), outputSize(3), []);
% Relabel.
Y = dlarray(Y,'SSCB');
end
end
end
GPU Compatibility
If the layer forward functions fully support dlarray
objects, then the layer is GPU compatible. Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type gpuArray (Parallel Computing Toolbox).
Many MATLAB built-in functions support gpuArray (Parallel Computing Toolbox) and dlarray
input arguments. For a list of functions that support dlarray
objects, see List of Functions with dlarray Support. For a list of functions that execute on a GPU, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For information on supported devices, seeGPU Computing Requirements (Parallel Computing Toolbox). For more information on working with GPUs in MATLAB, see GPU Computing in MATLAB (Parallel Computing Toolbox).
In this example, the MATLAB functions used in predict
all supportdlarray
objects, so the layer is GPU compatible.
Include Custom Layer in Network
Define the following generator network architecture for a GAN, which generates images from 1-by-1-by-100 arrays of random values:
This network:
- Converts the random vectors of size 100 to 7-by-7-by-128 arrays using a project and reshape layer.
- Upscales the resulting arrays to 64-by-64-by-3 arrays using a series of transposed convolution layers and ReLU layers.
Define this network architecture as a layer graph and specify the following network properties.
- For the transposed convolution layers, specify 5-by-5 filters with a decreasing number of filters for each layer, a stride of 2, and cropping of the output on each edge.
- For the final transposed convolution layer, specify three 5-by-5 filters corresponding to the three RGB channels of the generated images, and the output size of the previous layer.
- At the end of the network, include a tanh layer.
To project and reshape the noise input, use the custom layer projectAndReshapeLayer.
filterSize = 5; numFilters = 64; numLatentInputs = 100;
projectionSize = [4 4 512];
layersG = [ featureInputLayer(numLatentInputs,Normalization="none") projectAndReshapeLayer(projectionSize); transposedConv2dLayer(filterSize,4numFilters) reluLayer transposedConv2dLayer(filterSize,2numFilters,Stride=2,Cropping="same") reluLayer transposedConv2dLayer(filterSize,numFilters,Stride=2,Cropping="same") reluLayer transposedConv2dLayer(filterSize,3,Stride=2,Cropping="same") tanhLayer];
Use the analyzeNetwork
function to check the size and format of the layer activations. To analyze the network for custom training loop workflows, set the TargetUsage
option to "dlnetwork"
.
analyzeNetwork(layersG,TargetUsage="dlnetwork")
As expected, the project and reshape layer takes input data with format "CB"
(channel, batch) and outputs data with format "SSCB"
(spatial, spatial, channel, batch).
To train the network with a custom training loop and enable automatic differentiation, convert the layer array to a dlnetwork
object.
netG = dlnetwork(layersG);
See Also
trainnet | trainingOptions | dlnetwork | dlarray | functionLayer | checkLayer | setLearnRateFactor | setL2Factor | getLearnRateFactor | getL2Factor | findPlaceholderLayers | replaceLayer | PlaceholderLayer | networkDataLayout
Related Topics
- Define Custom Deep Learning Layers
- Define Custom Deep Learning Layer with Learnable Parameters
- Define Custom Deep Learning Layer with Multiple Inputs
- Define Custom Recurrent Deep Learning Layer
- Specify Custom Layer Backward Function
- Define Custom Deep Learning Layer for Code Generation
- Define Nested Deep Learning Layer Using Network Composition
- Check Custom Layer Validity