laser diode testing (original) (raw)

Author: the photonics expert

Definition: various test procedures applied to laser diodes in qualification, regular batch testing or burn-in

More specific terms: L–I–V characterization, burn-in testing, batch testing, spectral analysis

Categories: article belongs to category photonic devices photonic devices, article belongs to category light detection and characterization light detection and characterization, article belongs to category laser devices and laser physics laser devices and laser physics, article belongs to category optical metrology optical metrology, article belongs to category methods methods

DOI: 10.61835/8ab [Cite the article](encyclopedia%5Fcite.html?article=laser diode testing&doi=10.61835/8ab): BibTex plain textHTML Link to this page share on LinkedIn

Laser diodes can generally be expected to reach long lifetimes, often many tens of thousands of operation hours. Nevertheless, or actually just in order to reach such high reliability, they need to be tested under various circumstances:

For such tests, various kinds of testing procedures have been established, and there are specific testing systems which allow one to apply those in a consistent, reliable and hopefully cost-effective way. Such testing systems are mainly used on laser diode manufacturing sites, much less by laser users.

The expenses for building testing facilities and establishing precise testing procedures are substantial, even if that is done with experienced personnel. However, such activities are essential for achieving consistent performance with high reliability and lifetime. Note that a lack of reliability can have severe consequences in some application areas; for example, consider the failure of pump laser diodes of fiber amplifiers in undersea communication links. The benefits during fabrication can also be substantial, for example avoiding the fabrication of many faulty lasers before that can be detected.

For laser diodes produced in large quantities, the expenses per device may be fairly small, although the initial investment is substantial.

Common Challenges and Limitations of Laser Diode Testing

The ideal laser diode testing system would assess all possibly relevant characteristics with high accuracy and perfect reliability within a short time, and this with high convenience and at a low cost, also concerning energy consumption. Unfortunately, this is not realistic for various reasons:

Complexity

A quite complex and expensive testing facility would be required to provide a complete characterization. Therefore, one often limits the tested aspects to those which are considered to be essential and where there is a significant probability to find specifications violated.

For example, one may not test laser diodes concerning their spatial emission profile, assuming that it will be okay at least in those cases where the central specifications are fulfilled. However, one may then e.g. overlook the failure of a single emitter in a diode bar, which is associated with a certain distortion of the beam profile in the slow axis direction. It should be considered based on the requirements for the intended applications and the experience with past failures how far the testing should go.

Testing Time

While some tests can be performed very quickly – in a fraction of a second –, particularly lifetime and reliability tests (see below) can take long times. To a substantial extent, this can be mitigated with accelerated lifetime tests, but with certain limitations as explained below.

Even testing other aspects such as output power over wavelength tunability can take substantial time, for example if it is necessary to vary the device temperature in some range. Note that certain problems may occur only under specific circumstances, i.e., for some combination of parameters; that is particularly the case for tunable lasers.

Not only the testing itself costs time, but possibly also the transfer of tested laser diodes into the testing system, including proper mounting, electrical connections, temperature control etc. Such time may be minimized by tightly integrating testing into production lines, which however is tentatively more expensive than using standard testing systems.

Testing Conditions

Testing is usually done under carefully controlled conditions in order to avoid variable external influences which would make it difficult to interpret the results. However, it must be kept in mind that real-life operation of laser diodes may deviate in some respects, and particularly concerning lifetime and reliability that can have substantial influences. In reality, one may experience substantially more frequent failures e.g. due to current spikes (from pure quality laser diode drivers) or due to electrostatic discharges when connecting diodes. On the other hand, lifetimes can be substantially longer than specified when diodes are operated with a down-rated output power or at lower temperature.

Common Methods of Laser Diode Testing

Lifetime and Reliability Tests – Use of Accelerated Aging

Lifetime and reliability of lasers are some of the key properties for applications, and therefore need to be carefully optimized and tested, e.g. in the context of quality control. Different ways of failure may occur:

Some failure mechanisms are systematic and occur with similar rates for all fabricated lasers of a certain model. The probability of final failure then increases with increasing operation time, with a substantial impact of operation parameters such as drive current and temperature. Sudden complete damage may occur as a consequence of steady degradation (e.g. gradual oxidation of the facet, eventually getting into a destructive run-away effect) after a relatively long operation times. In other cases, it occurs early on (as “infant mortality”) as a result of microscopic defects which were created during fabrication or were even present in the used semiconductor wafer. One will typically find that some small fraction of the fabricated lasers will die early on due to such effects, while most of the others live much longer.

Plotting the probability of failure versus operation time, one often obtains the typical “bathtub curve”: frequent failures in the first hundred hours, much higher reliability (with a low rate of random faults) during many hours thereafter, and finally an increasing probability of failure due to wear out when the usual end of life is reached. A quantitative life expectancy, e.g. in terms of mean time between failures (MTBF), may also be calculated from such parameters based on certain models.

Life tests and reliability tests are naturally time-consuming. Obviously, it is not practical to test a badge of laser diodes for many thousand hours before confirming that specifications are met and a fabrication process can continue. Even the aspect of occupying an expensive testing facility for such long times would not be acceptable. Therefore, methods of accelerated aging are widely applied – typically implemented such that laser diodes are intentionally operated at substantially increased temperatures, where certain aging processes are known to progress much faster than normal. In many cases, the rate of aging is known to follow an exponential law, i.e., to be proportional to <$\exp(E_\textrm{a} / k_\textrm{B} T)$>, where <$E_\textrm{a}$> is called an activation energy, <$k_\textrm{B}$> is Boltzmann's constant, and <$T$> is the operation temperature. One then typically adjusts the device temperature and the testing conditions such that the aging occurs at a rate which is several orders of magnitude faster than normal, so that the degradation of performance (e.g. of the optical output power) and total failure of diodes is seen accordingly sooner.

Accelerated aging can also be used during burn in: it allows one to identify defect lasers in a shorter time, so that these can be removed and the delivered lasers exhibit a correspondingly higher reliability.

Unfortunately, accelerated aging is not perfectly simple and reliable in all respects:

In conclusion, while the method of accelerated aging can save very much time, it still requires substantial time for establishing the test, and various uncertainties remain.

Note also that practically achieved lifetime and reliability can depend on various external conditions, such as the operation temperature (which itself can be affected by details of the cooling, e.g. by the chemical composition of cooling water which can lead to degradation of cooling water channels), the occurrence of optical feedback, and on voltage spikes, caused by the handling or by disturbances in the electric network. Since such conditions can be substantially different between testing sites and the situation in the real application, one will usually minimize any disturbing effect during testing, but should keep in mind that real-life reliability and lifetime may be substantially worse if the conditions are not perfect.

Another potential problem are spoiled tests due to power outages (blackouts), particularly in countries with a poor electrical infrastructure. Tests for low-power diodes may be relatively easily protected with an uninterruptible power supply based on rechargeable batteries, but it must be ensured that the testing device can handle possibly still occurring discontinuities of the supply voltage. (It is preferable to have the battery pack and power stabilization integrated into the device, with the manufacturer taking responsibility for the system as a whole.) For testing high-power diodes, particularly when many of them are tested in parallel, an uninterruptible power supply with a capacity for several hours of battery-powered operation may become too expensive. One should then at least be able to secure the measurement data and continue the test when the power comes back. Otherwise, substantial time and also tested lasers may be lost.

L–I–V Characterization

L–I–V (or LIV) characterization means that the optical output power and the voltage across the diode contacts are measured as functions of the junction current. The abbreviation L–I–V for light–current–voltage is common, but actually quite awkward: with L one means the power <$P$> of the emitted light, and the official formula symbol for the voltage is actually <$U$> rather than <$V$>. Therefore, P–I–U testing (or perhaps P–C–V for power–current–voltage) would actually be more appropriate, but is not common.

L-I-V curves of laser diode

Figure 1: L–I–V curves for a high-power laser diode. While the optical power become substantial only above the threshold current, the voltage drop grows steadily with increasing current.

For L–I–V measurements, one uses a constant current source (enforcing a certain electric current irrespective of the encountered electrical resistance), connected to the laser diode pins, a voltmeter connected in parallel, and an optical power meter. The latter might be realized with an integrating sphere and a photodiode, where the former leads to insensitivity of the measured power against the spatial emission characteristics (which might well depend on the drive current). (Such aspects of course do not apply to fiber-coupled diode lasers.) The used photodetector should ideally exhibit a weak wavelength dependence, since the emission wavelength can vary in a certain range.

The following key properties of a laser diode can be obtained:

Generally, a high precision of the measurement results (and temperature stabilization) is desirable, so that it is clear that slightly falling or rising values are due to changes in the tested diodes rather than drifts of the measurement system.

Automated L–I–V characterization systems can have various convenient features:

Although the basic principle of L–I–V testing is simple, overall the matter can be complex, considering the many desirable details and the required precision. Therefore, using dedicated high quality laser testing instruments is often a good solution, despite the substantial cost. Still, substantial experience is required at least for reliable testing in manufacturing environments.

L–I–V tests may not only be applied to fully packaged lasers, but also at earlier steps in the fabrication in order to recognize potential problems early on and to avoid unnecessary further processing of defect laser chips (which contributes much to the fabrication cost). For example, edge-emitting lasers may undergo a first testing directly after slicing the semiconductor wafer and coating the end faces. Easier testing is possible for surface-emitting semiconductor lasers like VCSELs.

Optical Spectrum

The optical spectrum of the laser emission is relevant for many applications. For example, diode-pumped lasers based on typical laser crystals like Nd:YAG have relatively narrow-band pump absorption features. Therefore, drifts of the center wavelength and/or a widened spectrum can seriously compromise the pump absorption efficiency and thus the laser performance.

It can thus be important to characterize the optical spectrum, using some kind of optical spectrum analyzer. For multimode lasers, it should be kept in mind that the emission spectrum is not necessarily identical for all parts of the laser, e.g. for the different emitters of a diode bar. Usually, one will try to collect the information for spectral analysis such that most of the emitted light is collected, despite the necessity to provide sufficient optical attenuation for the spectrometer.

In the case of wavelength-tunable lasers, one will usually want to record the spectrum for different settings of the output wavelength, e.g. in order to verify the whole tuning range and smooth tuning throughout that range. The impact of temperature changes may also be relevant, unless the device is specified for operation at constant temperature. Particularly for single-frequency lasers, multi-hop-free tuning may have to be checked. Specialized characterization setups are needed for such tasks.

Spatial Emission Profiles

In some cases, the spatial emission profile of laser diodes is of high interest, e.g. for tracking down problems with single failed emitters of diode bars, or when highly uniform illumination is required. Both the near-field and far-field properties can be of interest:

It is thus clear that a comprehensive characterization of spatial beam profiles should address both the near and far field, using suitable optical elements. Still, a full spatial characterization will usually not be achieved, particularly for multi-emitter lasers, where complicated phenomena such as partial coherence between different emitters (particularly under conditions of optical feedback) can arise, and where the emission pattern can change substantially with changes of drive current or other conditions. A much simpler situation is encountered for essentially diffraction-limited low-power single emitters, where unusual emission patterns can basically occur only in the case of facet damage.

Pulse Features

While many laser diodes are used in continuous-wave operation or in quasi-continuous-wave operation, there are also pulsed laser diodes, e.g. based on the technique of gain switching for generating picosecond pulses (→ picosecond diode lasers). One may then need to measure the temple profile, i.e., the output power as a function of time during a pulse. For that, one will usually use a very fast photodiode, possibly with an optical attenuator.

For longer pulses with correspondingly higher energies, it may happen that the rise of junction temperature during the pulse leads to a frequency chirp, i.e., to a time-dependent emission spectrum. A spectrometer may often not be suitable for monitoring such details.

More to Learn

Encyclopedia articles:

Suppliers

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.