pulse trains (original) (raw)

Author: the photonics expert

Definition: regular sequences of pulses

Category: article belongs to category light pulses light pulses

DOI: 10.61835/kn1 [Cite the article](encyclopedia%5Fcite.html?article=pulse trains&doi=10.61835/kn1): BibTex plain textHTML Link to this page LinkedIn

Light pulses are flashes of light, often with very short pulse durations. They are often generated with lasers, but sometimes with other kinds of light sources such as flash lamps. In many cases, one does not generate single pulses, but regular sequences of pulses, called pulse trains, which may last over long times, for example days or weeks. Typically, one has regularly spaced pulses with constant parameters, i.e., periodic pulse trains.

pulse train

Figure 1: The pulse train with a repetition rate of 1 GHz, corresponding to a pulse spacing of 1 ns.

Parameters of Pulse Trains

Optical pulse trains are typically characterized by the following parameters:

Lasers Generating Pulse Trains

The most common types of laser sources producing pulse trains are repetitively Q-switched lasers and mode-locked lasers.

With Q-switched lasers, pulses can also be generated at irregular time intervals, but regular pulsing is most common. The pulse repetition rate is then often somewhere between 10 Hz and 100 kHz, although more extreme values are possible. Even if the trigger source of an actively Q-switched laser exhibits very precise timing, the laser pulses can exhibit a slightly variable time delay due to fluctuations of laser gain (e.g. as a result of fluctuating pulse energy from a flash lamp used as pump source). This can lead to some substantial level of timing jitter.

Mode-locked lasers naturally produce pulse trains with a very high pulse repetition rate (typically between 50 MHz and a few gigahertz), which is usually the inverse round-trip time of the laser resonator: an output pulse is obtained each time when the (single) circulating intracavity pulse hits the output coupler mirror. At least over short time spans, the resonator length is quite precisely constant, and there may be only a very low level of timing noise introduced by quantum noise influences via the gain medium and vacuum noise entering the laser mainly through the output coupler. Therefore, the pulse-to-pulse timing jitter can be extremely small (on an attosecond timescale), corresponding to a very low power spectral density of the timing noise at high noise frequencies. However, the low-frequency noise, corresponding to a longer time intervals, is usually orders of magnitude stronger due to various types of noise influences.

Pulse Repetition Rate Multiplication and Division

Even after generation of a pulse train, the repetition rate can be modified in both directions:

Pulse Bursts

In some cases, one deals with pulse bursts, which are pulse trains with a quite limited duration, for example corresponding to only a couple of pulses or a few hundred pulses. A burst mode laser source may emit such bursts in a regular fashion, where the repetition rate of the bursts is usually orders of magnitude lower than the repetition rate within a burst.

In some cases, the pulse spacing within one burst is not constant, and/or one has a variable pulse energy in the burst. As an unintentional effect, one sometimes obtains a drop of pulse energy during a burst due to gain saturation, although that can to some extent be compensated with certain means.

For more details, see the article on burst mode lasers.

More to Learn

Encyclopedia articles:

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.